35 research outputs found

    Celebrities and Shoes on the Female Brain: The Neural Correlates of Product Evaluation in the Context of Fame

    Get PDF
    Celebrity endorsement is omnipresent. However, despite its prevalence, it is unclear why celebrities are more persuasive than (equally attractive) non-famous endorsers. The present study investigates which processes underlie the effect of fame on product memory and purchase intention by the use of functional magnetic resonance imaging methods. We find an increase in activity in the medial orbitofrontal cortex (mOFC) underlying the processing of celebrity-product pairings. This finding suggests that the effectiveness of celebrities stems from a transfer of positive affect from celebrity to product. Additional neuroimaging results indicate that this positive affect is elicited by the spontaneous retrieval of explicit memories associated with the celebrity endorser. Also, we demonstrate that neither the activation of implicit memories of earlier exposures nor an increase in attentional processing is essential for a celebrity advertisement to be effective. By explaining the neural mechanism of fame, our results illustrate how neuroscience may contribute to a better understanding of consumer behavior

    The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    Get PDF
    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development

    Optimization of Dual-Labeled Antibodies for Targeted Intraoperative Imaging of Tumors

    No full text
    For intraoperative imaging, antibodies labeled with both a radionuclide and a fluorophore may be used to tag the tumor lesion with a radiolabel and a fluorescent signal at high tumor to background ratios. However, labeling antibodies with fluorescent moieties may affect the in vivo behavior of the antibody depending on the dye to antibody substitution ratio. To investigate the optimal substitution ratio for use in dual-modality image-guided surgery, we conjugated three different antibodies, MN-14 (anti-CEACAM5), girentuximab (anti-CAIX), and cetuximab (anti-EGFR), with both diethylene triamine pentaacetic acid (DTPA, for labeling with 111In) and IRdye 800CW at dye to antibody ratios of 0, 1, 1.5, 2, and 3 and assessed in vivo behavior. Biodistribution studies showed that at high dye to antibody ratios, liver uptake of the dual-labeled antibodies increased, whereas tumor uptake decreased. Conversely, very low ratios may not be optimal either because in that case, only a few antibody molecules will be dual-labeled (i.e., contain both a DTPA and an IRDye 800CW moiety), which may complicate interpretation of dual-modality data. The present study shows that, provided that the chelator to antibody ratio is high enough, a dye to antibody ratio in the range of 1 to 1.5 is optimal for antibody-targeted dual-modality imaging applications. However, the optimal configuration is antibody dependent and should be determined for each dual-labeled antibody individually

    <i>CNTNAP2</i> and syntactic manipulation. a.

    No full text
    <p>ERP waveforms elicited by the agreement violations (dotted, coloured line) and their correct controls (solid, black line) for the AA and AT/TT genotype groups for electrodes Fz, FCz, and Pz. The left, grey block and right, green block indicate the latency windows used for analysis for the anterior negativity and P600 respectively. In this and the following figure the waveforms are time-locked to the onset of the critical word and negative voltage is plotted upward. An 8 Hz low-pass filter has been applied for illustrative purposes. <b>b.</b> Scalp distribution of the effect elicited by the agreement manipulation between 150 and 550, as well as 600 and 1000 ms after critical word onset. In this and the following figure the electrodes for which the waveforms are displayed have been highlighted.</p

    <i>CNTNAP2</i> and semantic manipulation.

    No full text
    <p>ERP waveforms elicited by the semantic anomalies (dotted, coloured line) and their correct controls (solid, black line) for the AA and AT/TT genotype groups for electrodes CP1, CP2, and Pz. The grey block indicates the latency window used for analyses of the N400 effect. The left panel of this figure depicts the scalp distribution of the effect elicited by the semantic manipulation between 300 and 550 ms after critical word onset.</p
    corecore