1,165 research outputs found

    ESC NN-Potentials in Momentum Space. I. PS-PS Exchange Potentials

    Get PDF
    A momentum space representation is derived for the Nijmegen Extended-Soft-Core (ESC) interactions. The partial wave projection of this representation is carried through, in principle for Two-Meson-Exchange (TME) in general. Explicit results for the momentum space partial wave NN-potentials from PS-PS-Exchange are given.Comment: 23 pages, 2 PostScript figures, revtex

    ESC NN-Potentials in Momentum Space. II. Meson-Pair Exchange Potentials

    Full text link
    The partial wave projection of the Nijmegen soft-core potential model for Meson-Pair-Exchange (MPE) for NN-scattering in momentum space is presented. Here, nucleon-nucleon momentum space MPE-potentials are NN-interactions where either one or both nucleons contains a meson-pair vertex. Dynamically, the meson-pair vertices can be viewed as describing in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. Part of the MPE-vertices can be found in the chiral-invariant phenomenological Lagrangians that have a basis in spontaneous broken chiral symmetry. It is shown that the MPE-interactions are a very important component of the nuclear force, which indeed enables a very succesful description of the low and medium energy NN-data. Here we present a precise fit to the NN-data with the extended-soft-core (ESC) model containing OBE-, PS-PS-, and MPE-potentials. An excellent description of the NN-data for TLab350T_{Lab} \leq 350 MeV is presented and discussed. Phase shifts are given and a χp.d.p.2=1.15\chi^2_{p.d.p.} = 1.15 is reached.Comment: 27 pages, 5 PostScript figures, revtex

    Pion-Nucleon Scattering in Kadyshevsky Formalism: II Baryon Exchange Sector

    Get PDF
    In this paper, which is the second part in a series of two, we construct tree level baryon exchange and resonance amplitudes for πN\pi N / MBMB-scattering in the framework of the Kadyshevsky formalism. We use this formalism to formally implement absolute pair suppression, where we make use of the method of Takahashi and Umezawa. The resulting amplitudes are Lorentz invariant and causal. We continue studying the frame dependence of the Kadyshevsky integral equation using the method of Gross and Jackiw. The invariant amplitudes, including those for meson exchange, are linked to the phase-shifts using the partial wave basis.Comment: 49 page

    Extended-soft-core Baryon-Baryon Model II. Hyperon-Nucleon Interaction

    Get PDF
    The YN results are presented from the Extended-soft-core (ESC) interactions. They consist of local- and non-local-potentials due to (i) One-boson-exchange (OBE), with pseudoscalar-, vector-, scalar-, and axial-vector-nonets, (ii) Diffractive exchanges, (iii) Two-pseudoscalar exchange, and (iv) Meson-pair-exchange (MPE). This model, called ESC04, describes NN and YN in a unified way using broken flavor SU(3)-symmetry. Novel ingredients are the inclusion of (i) the axial-vector-mesons, (ii) a zero in the scalar- and axial-vector meson form factors. We describe simultaneous fits to the NN- and YN-data, using four options in the ESC-model. Very good fits were obtained. G-matrix calculations with these four options are also reported. The obtained well depths (U_\Lambda, U_\Sigma, U_\Xi) reveal distinct features of ESC04a-d. The \Lambda\Lambda-interactions are demonstrated to be consistent with the observed data of_{\Lambda\Lambda}^6He. The possible three-body effects are investigated by considering phenomenologically the changes of the vector-meson masses in a nuclear medium.Comment: preprint vesion 66 pages, two-column version 27 pages, 17 figure

    Fully double-logarithm-resummed cross sections

    Full text link
    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in electron-positron annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-next-to-leading order.Comment: To appear in Nuclear Physics

    Antiproton-proton partial-wave analysis below 925 MeV/c

    Full text link
    A partial-wave analysis of all antiproton-proton scattering data below 925 MeV/c antiproton laboratory momentum is presented. The method used is adapted from the Nijmegen phase-shift analyses of pp and np scattering data. The Nijmegen 1993 antiproton-proton database, consisting of 3646 antiproton-proton scattering data, is presented and discussed. The best fit to this database results in chi^2_min/Ndata = 1.043. The pseudovector coupling constant of the charged pion to nucleons is determined to be (f_c)^2 = 0.0732(11) at the pion pole, where the error is statistical.Comment: Report THEF-NYM 93.02 42 pages REVTeX, 7 separate postscript figures appended. Accepted for publication in Phys. Rev.
    corecore