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The YN results are presented from the Extended-soft-core (ESC) interactions. They consist 
of local- and non-local-potentials due to (i) One-boson-exchanges (OBE), which are the members 
of nonets of pseudoscalar-, vector-, scalar-, and axial-mesons, (ii) Diffractive exchanges, (iii) Two 
pseudoscalar exchange (PS-PS), and (iv) Meson-Pair-exchange (MPE). Both the OBE- and Pair- 
vertices are regulated by gaussian form factors producing potentials with a soft behavior near the 
origin. The assignment of the cut-off masses for the BBM-vertices is dependent on the SU(3)- 
classification of the exchanged mesons for OBE, and a similar scheme for MPE.

The particular version of the ESC-model, called ESC04 [1], describes nucleon-nucleon (NN) and 
hyperon-nucleon ( YN) in a unified way using broken SU(3)-symmetry. Novel ingredients are the 
inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson 
form factors. These innovations made it possible for the first time to keep the parameters of the 
model closely to the predictions of the 3P0 quark-antiquark creation (QPC) model. This is also 
the case for the F /(F +  D)-ratio’s. Furthermore, the introduction of the zero helped to avoid the 
occurrence of unwanted bound states.

Broken SU(3)-symmetry serves to connect the NN  and the YN channels, which leaves after fitting 
NN  only a few free parameters for the determination of the YN-interactions. In particular, the 
meson-baryon coupling constants are calculated via SU (3) using the coupling constants of the NN- 
analysis as input. Here, as a novel feature, we allow for medium strong flavor-symmetry-breaking 
(FSB) of the coupling constants, using the 3P0-model with a Gell-Mann-Okubo hypercharge breaking 
for the BBM-coupling. We obtained very good fits for ESC-model with and without FSB. The 
charge-symmetry-breaking (CSB) in the Ap and An channels, which is an SU(2) isospin breaking, 
is included in the OBE-, TME-, and MPE-potentials.

We describe simultaneous fits to the NN- and the YN- scattering data, using different options for 
the ESC-model. For the selected 4233 NN-data with energies 0 < Tlab < 350 MeV, we typically 
reached a x 2/N data =  1.22. For the usual set of 35 YN-data and 3 E+p cross-sections from a recent 
KEK-experiment E289 [23] we obtained x 2/Y N data ~  0.63. In particular, we were able to fit the 
precise experimental datum r R =  0.468 ±  0.010 for the inelastic capture ratio at rest rather well.

The four versions (a,b,c,d) of ESC04 presented in this paper, give different results for hypernuclei. 
The reported G-matrix calculations are performed for YN (A N , E N , HN) pairs in nuclear matter. 
The obtained well depths (UA, U s , Us ) reveal distinct features of ESC04a-d. The AA-interactions 
are demonstrated to be consistent with the observed data of A6AHe. The possible three-body effects 
are investigated by considering phenomenologically the changes of the vector-meson masses.

PACS num bers: 13.75.Cs, 12.39.Pn, 21.30.+y

I. IN T R O D U C T IO N

This is the  second in a series of papers where we 
present the recent results obtained w ith the Extended- 
Soft-Core model, henceforth referred to  as ESC04, model 
for nucleon-nucleon (NN), hyperon-nucleon (YN), and 
hyperon-hyperon ( Y Y ) . This paper trea ts  the  NN- and 
YN(S=-1)-systems. In [1], in the following referred to  as
I, m any formal aspects have been described or discussed 
ra th e r extensively. Therefore, in th is paper we will con­
cen trate  on item s th a t are in particu larly  im portan t in 
YN, and th a t were not trea ted  in [1]. In paper III [2] the
S  =  —2 channels will be described.

In [3] and [4] it has been shown the a soft-core (SC) 
one-boson-exchange (OBE) model, based on regge-pole

theory  [5], provides a satisfactory  description of m any 
aspects of the  nucleon-nucleon (NN) and hyperon-nucleon 
( YN) channels.

Since for NN the  ESC-m odel has given a big step  for­
w ard in the detailed description, one m ay expect th a t a 
sim ultaneous and unified trea tm en t of the NN and YN 
channels, using broken SU(3), will give a very realistic 
model for the baryon-baryon interactions. (In this paper 
by SU(3) is m eant always SU(3)-flavor.)

In all previous work of the Nijmegen group, the ex­
ploration of (broken) SU (3)-sym m etry connects the  NN 
and the YN channels, leaving after fitting N N  only a few 
free param eters to  be determ ined in the YN-interactions. 
The la tte r is im portan t in view of the scarce experi­
m ental YN-data. In particular, the  baryon-baryon-m eson
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BBM coupling constants are calculated via SU(3) using 
the coupling constants of the NN-analysis as input. The 
first versions of the  ESC-model, referred to  as ESC00 
[6 , 7], worked along the same procedures. The aim  of the 
ESC00 work was to  dem onstrate the ability  of the ESC- 
model to  realize a very good description of the  NN- and 
YV-data, i.e. a low x 2. Therefore, we left much freedom 
to  the param eters. However, in the  ESC04 version pre­
sented here, we focus on the  im provem ent of the physics 
of the model by restricting  the coupling constants in 
the  BBM -vertices by the predictions of the  quark-m odel 
(QM) in the form of the  3P 0 an tiquark-quark  pair cre­
ation model (Q PC) [8]. Also, all a  =  F /(F  +  D )-ratios 
are taken  close to  the  Q PC-m odel predictions for the 
BBM- and the BB-Pair-vertices. An exception is made 
here for the  pseudoscalar a PV and the a™ ratios. The 
first because it is in teresting to  see how close or differ­
ent it becomes as com pared to  the same ra tio  in weak 
interactions, where a PV =  0.355. The second, because 
it proved to  be an im portan t regulator for the  S-wave 
spin-dependence of the A N  -in teraction [4].

In [3] the  m agnetic ra tio  am  for the vector-mesons was 
fixed to  its SU(6 )-value, bu t the spin-spin in teraction  
needed a correction. This because the  S-wave spin-spin 
in teraction in the  A N  -channels became la ter well known 
from hypernuclear system s [9, 10, 11]. In [4], to  improve 
the spin-spin in teraction, we left am  free and  m ade fits 
for different values of this param eter. I t tu rned  out th a t 
in this way we indeed can construct soft-core YN-models 
which encompass a range of scattering  leng th ’s in the 1 S0 
and the 3S i A N  channels. From  the NSC97a-f models the 
sensitivity w ith respect to  am is evident.

SU (3)-sym m etry and the Q PC-m odel give strong con­
s tra in ts  on the coupling param eters. In order to  keep 
some more flexibility in distinguishing the NN- and 
the !N (S=-1)-channels, sim ilarly to  the NSC97 models
[4], we allow for m edium  strong breaking of the cou­
pling constants, employing again the 3Po-model w ith a 
Gell-M ann-O kubo hypercharge breaking for the  BBM- 
coupling. This leads to  a universal scheme for SU(3)- 
breaking of the coupling constants for all meson nonets, 
in term s of a single ex tra  param eter.

To sum m arize the different sources of SU(3)-breaking, 
we include (i) using the physical masses of the mesons 
and baryons in the potentials and Schrödinger equa­
tion, (ii) allowing for meson-mixing w ithin a nonet 
(n — n', w — e — f0 , (iii) including Charge Sym m etry 
Breaking (CSB) [12] due to  AS-mixing, which for exam ­
ple introduces a one-pion-exchange (O PE) poten tia l in 
the  A N  channel, (iv) taking into account the Coulomb­
interaction.

The electrom agnetic SU(2)-breaking [12], called 
Charge-Sym m etry-Breaking (CSB), in the Ap and An  
channels is included, not only for the BBM- bu t also for 
the  BB-Pair-couplings.

The BBM -vertices are described by coupling constants 
and form factors, which correspond to  the regge residues 
a t high energies [5]. The form factors are taken  to  be

of the gaussian-type, like the residue functions in m any 
regge-pole models for high energy scattering. Note th a t 
also in (nonrelativistic) quark  models (Q M ’s) a gaussian 
behavior of the form factors is m ost na tu ra l. These form 
factors evidently guarantee a soft behavior of the poten­
tials in configuration space a t small distances.

In [4] the  assignm ent of the  cut-off param eters in the 
form factors was m ade for the individual baryon-baryon- 
meson (BBM) vertices, constrained by broken SU(3)- 
sym m etry. This in d istinction  to  the first a ttem p t to  
construct soft-core in teraction [3], where cut-offs were as­
signed per baryon-baryon SU(3)-irrep. The la tte r scheme 
we consider now no t n a tu ra l and we use here the same 
scheme as in [4]. Moreover, th is way we ob tain  immedi­
ately  full predictive power for the  S  =  —2 etc. baryon­
baryon channels, e.g. AA, SN -channels which involve the 
singlet {1}-irrep th a t does not occur in the NN and  YN 
channels.

The dynam ics of the  ESC04 model has been described 
and discussed in paper I [1], and it is sufficient to  refer 
to  th is here for all types of exchanges th a t are included. 
Nevertheless, some more rem arks on the scalar mesons 
are appropriate. An extensive discussion of the situa­
tion  w ith respect to  the  scalar mesons is given in [4]. 
The question w hether the  J PC =  0++-mesons are of the 
D alitz-type (QQ) or of the  Jaffe-type (Q 2Q 2) is no t yet 
decided. In the  coupling to  the baryons, we assume here 
th a t the basic process is described by the Q PC-m odel
[8]. I t has been shown in paper I th a t this seems ra ther 
successful, justifying this assum ption.

W ith  a combined trea tm en t of the N N  and Y N  chan­
nels we aim  a t a high quality  description of the baryon­
baryon interactions. By high quality  we understand  here 
a YN-fit w ith low x 2 and such th a t, while keeping the 
constrain ts forced on the potentials by the N N -fit, the 
free param eters w ith a clear physical significance, like 
e.g. the F / ( F  +  D )-ra tio ’s a PV and a m , assume realistic 
values.

Such a combined study  of all baryon-baryon in terac­
tions, and especially NN and YN, is desirable if one wants:

•  To study  the assum ption of broken SU(3)- 
symmetry. For exam ple we w ant to  investigate the 
properties of the scalar mesons (e(760), f 0(975), 
a 0(980), k(1000)). We note th a t especially the  s ta ­
tus of the  scalar nonet is a t present not established 
yet.

•  To determ ination of F / ( F  +  D )-ra tio ’s.

•  To ex tract, in spite of the scarce experim ental YN - 
da ta , inform ation about scattering  lengths, effec­
tive ranges, the  existence of resonances etc.

•  To provide realistic baryon-baryon potentials, 
which can be applied in few-body com putations, 
nuclear- and hyperonic m a tte r studies.

•  To extend the theoretical description to  the AA and 
S N  channels, where experim ents m ay be realized in 
the  foreseeable future.
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In the construction  of the ESC-models there are two 
im portan t options:

(i) F irst, there is the choice of the pv- or the  ps- 
coupling for the  pseudoscalar mesons, or some mix­
ture, regulated by the a PV-param eter, of these. 
This choice affects some 1 /M 2-term s in the ps-ps- 
exchange potentials.

(ii) Second, yes or no m edium  strong sym m etry- 
breaking of the couplings, regulated by a A FSB - 
param eter.

We have accordingly produced four different solutions, 
fitting sim ultaneously the N N  © YN -data , which are 
referred to  as follows: ESC 04a(A FSB =  0, a PV =  0.5),
ESC04b(A_FSB =  0 , aP v  =  1 .0 ), E S C 0 4 c(A fsb  =
0 , aP v  =  0.5), ESC04d(A_FSB =  0 , aP v  =  1 .0 ). Here, 
a PV =  1.0 and aPV =  0.0 means pure pseudo-vector re­
spectively purely pseudoscalar coupling. It appears th a t 
there are notable differences between these models, in 
particu larly  their properties for m atter, e.g. well-dephs 
Ua, Us , and Un , are ra th e r distinct.
We will display and discuss in this paper only the results 
for the ESC04a-model in detail. W ith  the exception of 
the G -m atrix  results, we will be very brief on ESC04b-d 
and will com pare these models only very globally. So, 
in the  following, by ESC04 is m eant ESC04a, unless 
specified otherwise.

As in all Nijmegen models, the  Coulomb in teraction 
is included exactly, for which we solve the m ultichannel 
Schrödinger equation on the physical particle basis. The 
nuclear potentials are calculated on the isospin basis, in 
order to  lim it the  num ber of different form factors. This 
m eans th a t we include only the so-called ’m edium  strong ’ 
SU (3)-breaking in the  potentials.

The contents of th is paper are as follows. In section
II we describe the S  =  —1 YN -channels on the isospin 
and particle basis, and the use of the m ulti-channel 
Schroödinger equation is m entioned. The potentials in 
m om entum  and configuration space are defined by re­
ferring to  the  description given in paper I. The BBM- 
couplings are discussed bo th  in the 3 x 3-m atrix and the 
cartesian-octet representation. The SU(3)-couplings of 
the OBE- and TM E-graphs are given in a form suitable 
for a digital evaluation.
In section III the  m eson-pair in teraction H am iltonians 
are given in the context of SU(3). Expressions for the 
m eson-pair-exchange (M PE) graphs are given, again in 
an im m ediately program m able form. In section IV the 
m edium -strong breaking of SU (3)-sym m etry of the  cou­
pling constants is described. The Q PC-m odel is em­
ployed for the developm ent of a universal scheme for this 
breaking. Here also the detailed prescription for the han­
dling of the  cut-off param eters is given, in particu larly  for 
the cases of meson-mixing.
In section V the sim ultaneous N N  © YN  fitting procedure 
is reviewed. In section VI the results for the coupling

constants and  F /  (F  +  D )-ratios for OBE and M PE are 
given. T hey are discussed and  com pared w ith the pre­
dictions of the QPC-m odel. Here, also the values of the 
B B M -couplings are displayed for pseudoscalar, vector, 
scalar, and axial-vector mesons.
In section VII the NN-results from the combined N N  © 
Y N -fit, model ESC04a, henceforth called ESC04, are dis­
cussed and com pared w ith the results of paper I, referred 
to  ESC04(NN). In section VIII we discuss the fit to  the 
YN scattering  d a ta  from the combined N N  © Y N -fit. In 
section IX we com pare very briefly the  models ESC04a-d. 
In section X, the  hypernuclear properties of ESC04a-d are 
studied  through  the G -m atrix  calculations for YN  (AN, 
S N , S N ) and their partial-w ave contributions. Here, the 
im plications of possible th ree-body effects for the nuclear 
sa tu ra tio n  and baryon well-dephs are discussed. Also, 
the AA in teractions in ESC04a-d are dem onstrated  to  be 
consistent w ith the observed d a ta  of AAHe. In section XI 
we finish by a final discussion and draw  some conclusions.

II. C H A N N E L S, P O T E N T IA L S , A N D  
SU (3)-S Y M M E T R Y

A. C hannels  and  P o te n tia ls

In this paper we consider the hyperon-nucleon reac­
tions w ith S  =  —1

Y(pa ,S a ) +  N (pb,Sb) ^  Y(p a , s l ) +  N (pb, sb) (2.1)

Like in Ref.’s [3, 4] we will also refer to  Y  and Y ' as 
particles 1 and 3, and to  N  and N ' as particles 2 and 4. 
For the kinem atics and the definition of the am plitudes, 
we refer to  paper I [1] of th is series. Similar m aterial 
can be found in [3]. Also, in paper I the derivation of 
the Lippm ann-Schwinger equation in the context of the 
relativistic tw o-body equation is described.

On the physical particle basis, there are four charge 
channels:

q =  + 2  : S + p ^  S+p,
q =  +1 : (Ap, S + n , S 0p) ^  (Ap, S + n , S 0p),
q =  0 :  (An, S 0n, S - p) ^  (An, S 0n, S - p),

q =  —1 : S - n  ^  S - n. (2.2)

Like in [3, 4], the potentials are calculated on the 
isospin basis. For S  =  —1 hyperon-nucleon system s there 
are only two isospin channels: (i) I  =   ̂ : (AN, "EN —>■ 
AN, E N ), and (ii) I  =  |  : E N  -► EN .

Obviously, the poten tia l on the particle basis for the 
q =  2 and q =  —I channels are given by the I  =  |  E N  
poten tia l on the isospin basis. For q =  1 and q =  0, 
the potentials are related  to  the potentials on the isospin 
basis by an isospin ro tation . Using a no tation  where we 
only list the  hyperons [VAS+ =  (A p |V |S + n), etc.], we 
find for q =  1
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/  Vaa VAE+ VAE0 \ 1 V a a \ [ i v ^ - y / h V A V  '

A+ V e + E+ VE+E0 = \ f i VS A | Y E E ( i )  +  g V s s ( |) ^a/ 2  [VsE ( | )  -  VsE (i) ]

\  VE0A +w VE0 E0 /
v ~ \ [ ï v ^K 5 a/ 2  [Y e e ( | )  -  Y E E ( i ) ] +  | Y e e ( | )  j

while for q =  0 we find

I  VAA ^AE0 ^AE- 

Vs»A Ve0 E0 Ve0e - 

V Ve-  a  Ve- e 0 VE- e -

Vaa \ß VAS
\[\v ? .A  5 ^ EE( i )  + | y Es ( f )  ^ ^ [ V s s d )  -  V s s ( i) ]

~ \ ß V r . A  ^ a / 2 [ V e e ( § )  -  V s E ( i ) ]  | V s E ( i )  +  i V s E ( | )  )

(2.3)

(2.4)

For the  kinem atics of the  reactions and the various 
thresholds, see [4]. In th is work we do not solve the 
Lippm ann-Schwinger equation, bu t the m ulti-channel 
Schrödinger equation in configuration space, com pletely 
analogous to  [3]. The m ultichannel Schrödinger equa­
tion  for the  configuration-space poten tia l is derived from 
the Lippm ann-Schwinger equation through the standard  
Fourier transform , and the equation for the radial wave 
function is found to  be of the form [3]

l i,j +  (Pi^i,j — Ai,j )u l,j — B i,j u l,j 0 , (2.5)

where A i}j  contains the potential, nonlocal contributions, 
and the centrifugal barrier, while B ij  is only present 
when non-local contributions are included. The solution 
in the presence of open and closed channels is given, for 
example, in Ref. [13]. The inclusion of the  Coulomb in ter­
action in the  configuration-space equation is well known 
and included in the evaluation of the  scattering  m atrix.

The m om entum  space and configuration space poten­
tials for the ESC04-model have been described in paper 
I [1] for baryon-baryon in general. Therefore, they  ap­
ply also to  hyperon-nucleon and we can refer for th a t 
p a rt of the  poten tia l to  paper I. Also in the ESC-model, 
the  potentials are of such a form th a t they  are exactly 
equivalent in bo th  m om entum  space and configuration 
space. The trea tm en t of the  mass differences am ong the 
baryons are handled exactly sim ilar as is done in [3, 4]. 
Also, exchange potentials related  to  strange meson ex- 
chanhe K , K * etc. , can be found in these references.

The baryon m ass differences in the  interm ediate sta tes 
for TM E- and M PE- potentials has been neglected for 
YN-scattering. This, although possible in principle, be­
comes ra th e r laborious and is not expected to  change the 
characteristics of the baryon-baryon potentials much.

B. B B M -coup lings in SU (3), M a tr ix -re p re sen ta tio n

In previous work of the Nijmegen group, e.g. [3] and 
[4], the trea tm en t of SU(3) has been given in detail for

the BBM interaction  Lagrangians and the coupling co­
efficients of the  O BE-graphs. However, for the  ESC- 
models we also need the coupling coefficients for the 
TM E- and the M PE-graphs. Since there are m any more 
TM E- and M PE-graphs th an  O BE-graphs, an com puter­
ized com putation  is desirable. For th a t purpose we found 
the so-called ’cartesian -octe t’-representation quite useful. 
Therefore, we give an exposition of th is representation, 
its connection w ith the m atrix  representation  used in our 
previous work, and the form ulation of the coupling coef­
ficients used in the  au tom atic com putation.

In the m atrix  representation, the  eight J p =  |  + 
baryons are described by a traceless m atrix , see e.g. [14],

B

a/ 2  a/ 6

s -  4  +  A
a/ 2  a/ 6

"0
V

2A

7 6  /

(2 .6 )

Similarly, the various meson nonets (we take the pseu­
doscalar mesons w ith J P =  0+ as an example) are rep­
resented by

P  =  P {1} +  P {8}, (2.7)

where the singlet m atrix  has elements 770/ a/3  on the 
diagonal, and the octet m atrix  P{8} is given by

(  _  I
a/ 2  a/ 6

P {8}

K + \

\

a/ 2  a/ 6

W  - i*
a/ 6  /

(2 .8 )

Exploiting the SU (3)-invariant com binations, see e.g. 
[4, 14], [B B P ]p , [B B P ]d , and [B B P ]S , the  SU(3)- 
invariant B B P-interaction  Lagrangian can be w ritten  as

P

n

+
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[14]

C i — —ggV^ { a  [E B P ] F -\ - ( 1  — a) [E B P ] D }

-  91 [B B P] (2.9)

where g8 and g1 are the  singlet and octet couplings, a  
is known as the  F /(F  +  D ) ratio , and the square-root 
factors are in troduced for la ter convenience.

The convention used for the  isospin doublets is

N  =  

K  =

p  
n

K + 
K  0 Kc = (2 .10)

and for the  isovectors in the  SU (2)/-tensor no tation
(a ,b  =  1, 2 )

7T °

72

S a 
b

VI y +
V2
y -L 72

(2 .11)

where we have chosen the phases of the isovector fields 
such [14] th a t

£ •n  = 5 3  Sa S + n -  +  S 0 n 0 +  S - n + . (2 .12)
,b=1

The expression of the interaction  Lagrangian (2.9) in 
term s of the  isospin singlets (I=0), doublets (I=  1/2), 
and trip lets (I=1), is given e.g. in [4]. Also, the B B M  - 
couplings of the octet-m em bers are given in term s of g8 
and a  =  F / ( F  +  D ). See [4], equations (2.10)-(2.14).

C. C a rte s ia n -o c te t R ep re sen ta tio n

The annihilation operators corresponding to  the 
baryon and pseudoscalar SU(3) octet-representation {8} 
are given in Table I . Here we used the  cartesian  
octet fields. For baryons these are denoted by ^  (i =  
1, 2 , . . . ,  8 ), and for the pseudoscalar mesons by ^i (i =
1, 2 , . . . ,  8 ) [14, 15, 16]. The particle sta tes are created by 
these operators are given in Table II [14]. Similar expres­
sions hold for the  vector, axial-vector, and scalar mesons. 
The connection between the m atrix-represen tation  (2.6) 
and the cartesian-octet representation is

1 8 1 3
B b =  ^  =  zm  £ (Ai)o6jB6“ (2-13)V 2 a,b= 1

where A j,i =  1, 8 are the  Gell-M ann m atrices [14], and 
where the indices (a ,b  =  1, 2, 3). The same expression 
holds for P ba of (2.8) in term s of the  & ’s. The S U I ­

TABLE I: Octet Representation Baryons and Mesons.

E+ =  7 f ( ^ i  -  # 2) n+ =  7 5 -  *^2)

E - =  75(^1  +  # 2) n - =  7 5 (^1 +  # 2)

E° =  ^3 n° =  ?3

P =  75(^4  -  # b ) K+ =  75  (04 — i4>b)

n =  75 K° =  75  (06 -  # 7)

s - =  75(^4  +  # b ) K  - =  75(04 +  # b)

s ° =  75(^6  +  # 7) K  ° =  75(^6  + # 7)

A =  ^8 n =  ?8

TABLE II: Octet Particle States.

|n +) = —n + t|0) |E+) = —E + t|0)

I O  = n - t |0) |E+ ) = E - t |0)

|n°) = n ° t|0) |E° ) = E°t|0)

|K+ ) = K +t|0) |  P) = p t |0)

|K° ) = K °t |0) |n) = n^|0)

|K - ) = K - t |0) | s - ) = H- t |0)

|K° ) = K ° t |0) |s°  ) = H°t|0)

|n8) = n8 |0) |A) = At 0)

invariants in the  cartesian-octet representation  read

8
[B B P ] p =  fijk  [V’iV’j] <Pk , (2.14a)

i,j,k= 1
8

[B B P ] d =  dijk lï’i i ’j] 4>k , (2.14b)
i,j,k=1 

8

[B B P ]S =  ^ i \  &  > (2 1 4 c )
i,j=1

0 +
a
b

3
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where f ij k are the  to ta lly  anti-sym m etric SU (3)-structure 
constants, dijk are the to ta lly  sym m etric constants, and 
^9 denotes the un ita ry  singlet. They are given by the 
following com m utators and anti-com m utators

— 2ifijk  ^  ^dijk Ak .(2.15)

The baryon-baryon m atrix  elements can now be com­
pu ted  using the cartesian  octet sta tes

(B3,B 4 |M |B i ,B 2) =  C3jC*An M (j, n; i ,m ) C u C 2m ,
(2.16)

where C-coefficients relate the particle sta tes to  the  carte­
sian states, see Table II, and M ( j ,n ;  i ,m )  depends on 
the s tructu re  of the graph. Below, we work out the 
M -opera to r for OBE-, TM E-, and M PE-graphs in the 
cartesian-octet representation. Then, the physical two- 
baryon m atrix  elem ents in (2.16) can be obtained easily.

n-exchange in S N  ^  S N . We have

1
8 3

(S + n lM ^IS + n) =  -  ^
i,j,m,n=1 p=1 

x (^6  -  iÿ r |ÿ n } (ÿ jÿ n |Mn |ÿiÿm} •
x ( ÿ i |ÿ i  -  i ÿ 2}(ÿm |ÿ6 -  iÿr}

1 8 3 
=  4 £  +  iÖ2j)(Ö6n +  iÖ7n) '

i,j,m,n= 1  p=1

x ( ^1i i^2i)(^6n i^7n)(ÿ j  ÿ n\M n |ÿ i ÿ m}
1 2 r 3

z (n ~ j , m ~ i ) ■4 i,j = 1 m,n=6 p=1

X 198 ) [ — i a PVf jip +  (1 — a PV )djip] +  9l )^ ji^ p ^  • 

x ^ g8 ) [ i a PVf nmp +  (1 a PV )dnmp] +   ̂̂ nm ^p^ ,

(2.19)

where the 2 x 2-m atrix  Z  is defined as

Z  = 1 - i  
i 1

(2 .20)

D. C o m p u ta tio n s  for O BE-, T M E -g rap h s 
SU (3)-fac to rs

•  O n e -B o so n -E x c h a n g e : The SU(3) m atrix  element 
for the O B E-graph Fig. 1 is given by

•  T w o -M e so n -E x c h a n g e : The SU(3) m atrix  ele­
m ents for the parallel ( / / )  and crossed (X) TM E-graphs 
Fig. 2 and Fig. 3 are given by

M tm/e)(j , n ; i ,m )  =  5 3  H 2 ( j , r , q) H i(r , i , p)
p,q,r,s

X H 2 (n ,s ,q )  H 1 (s ,m ,p )  (2.21)

Mobe(j,n; i ,m )  = ^  H (a)(j, i,p ) h 22ci) (n ,m ,p ) , (2.17)(a)

where a =  P ,V ,A ,S  and

M tm,l( j ,n ; i ,m )  =  5 3  H 2( j , r , q) H i ( r , i , p )
p,q,r,s

X H 1 (n ,s ,q )  H 2 (s ,m ,p )  (2.22)

Again, like in the OBE-case, the  num erical values of 
the SU(3) m atrix  elements for TM E can be com puted 
easily m aking a com puter program .

H a(j, i,p )  =  2g8a) { ia f jip  +  (1 -  a )d jip }

+ g 1 aSji5p (2.18)

III . M P E  IN T E R A C T IO N S  A N D  SU (3) 

A. P a ir  C ouplings and  S U (3 )-sy m m etry

The sum m ation over p  determ ines which mesons con­
trib u te  to  (2.18), and the prim e indicates th a t one m ay 
restric t th is sum m ation in order to  pick out a particu lar 
meson. This is in general necessary because w ithin an 
SU(3) nonet the mesons have different masses, and we 
need the ir couplings separately  for a proper calculation 
of the  potentials.

To illustra te  th is m ethod of com putation  we consider

Below, a, a 0, A 1, . . .  are short-hands for respectively 
the nucleon densities ÿ ÿ , ÿ r ÿ ,  >̂7 5 7 ÿ , . . . .

T he SU (3)-octet and -singlet mesons, denoted by the 
subscript 8 respectively 1, are in term s of the physical 
ones defined as follows:

(i) Pseudo-scalar-m esons:

n 1 =  cos 0PVn  -  sin 0PVn 

n8 =  sin Opv n  +  cos Opv n



7

m.

FIG. 1: Octet representation indices OBE-graphs. The solid 
lines denote baryons with labels i ,m ,j ,n .  The dashed line 
with label p refers to the bosons: pseudoscalar, vector, axial- 
vector, or scalar mesons.

m

FIG. 2: Octet representation indices TME-parallel-graphs. 
The solid lines denote baryons with labels i,m , j ,n ,r , s. The 
dashed lines with labels p,q  refer to the pseudoscalar mesons.

Here, n ' and  n are the physical pseudoscalar mesons 
n(957) respectively n(548).

(ii) Vector-m esons:

ÿ i =  cos 0V u  -  sin 0V ÿ  
ÿ8 =  sin 0V u  +  cos 0V ÿ

Here, ÿ  and  u  are the  physical vector mesons 
ÿ(1019) respectively u(783).

Then, one has the following SU(3)-invariant pair- 
in teraction  Ham iltonians:

r
1 ---------------------- --------------------- T -

\  /
\  /  

p '  '  q \  /
\  /
\  /

X 
/  \

/  \
/  \

/  \
/  \

'  s N m______________ t_____________ j__

FIG. 3: Octet representation indices TME-crossed-graphs. 
The solid lines denote baryons with labels i,m , j ,n ,r , s. The 
dashed lines with labels p, q refer to the pseudoscalar mesons.

1. SU(3)-singlet couplings S a =  Sga/

H siP P  =
QSxPP

V3
{ n  • n  +  2 K JK  +  n8n8} • a

2. SU (3)-octet sym m etric couplings I, S  
(1 /4 )T r{ S  [P ,P  ]+}:

H SsPP =  9- ^ -  j (a 0 • 7t),?8 +  ^ a 0 • ( A V A )

+  t A )  -TT+fr.C.}

-  ^  { (Ä'oÄ>?8  +  h.c.}

+ i/o (n - TV - A'fA' - 1]sm) j
3. SU (3)-octet sym m etric couplings II, Sa  =  (B8)a ^
(1 /4)T r{B ^[V ß , P ] + }:

n BsVP =  j  \  [(Bj* • PM) m  +  (Bj* • t tm)

+  [B i • (K *]t K )  +  h.c]

1

(K Jt K  *) • n  +  (K Jt K ) • p  +  h.c. 

( k J  • K  *)n8 +  ( k J  • k ) ÿ 8 +  h.c.

+  - H °
2

p 7T -  -  (A '* f • A ' +  /?..c.) -  </>8?7s

4. SU (3)-octet a-sym m etric couplings I, A a =  (V8)a ^
( - i / y / 2  )T r{ V ^ [P ,d MP ]_} :

H v s PP 9A 8p p  1 ö P u  • <9m7t +  - p  • ( A t r O T i )

,V 3
+  -  ^A '*^ t (A '9 m7t ) -  ft.c.J +

(A- d ^ ?8) -  h.c^j +  ^ ^ ( A ' t  K )

5. SU (3)-octet a-sym m etric couplings II, A a =  (A8)a ^
( - i /y /2 )T r {A n [P ,V M]-} :  

H a 8Vp  =  9 A 8 V ^  A i • n  x p

+  • [(A frA * )  -  (A *fr A ) ]  

( K ]t K a )- p + ( K ]a t K * )- -  h.c. 

h.c.~ *"^T ( ^  +  (Ka ’ Ä'*)»?8 _

+  ^ \ / 3 / i  [A^ • A'* — A *t • A'] J

The relation  w ith the pair-couplings of [24] and paper I 
f ó i p p / v ^  9{'K'k)q I 9 A 8VP 9(ltp)\!™"K ^tc.

p

n

r

p q

n

n



8

m

----------Ä----------
I \

I  \
I  \

I \
p f  n  q

/ \
/ \

/ \
s n

FIG. 4: Octet representation indices MPE one-pair-graphs. 
The solid lines denote baryons with labels i, m, j, n, s . The 
dashed lines with labels p, q refer to the pseudoscalar etc. 
mesons.

p q

m n

FIG. 5: Octet representation indices MPE two-pair-graphs. 
The solid lines denote baryons with labels i, m, j, n . The 
dashed lines with labels p, q refer to the pseudoscalar etc. 
mesons.

B. C o m p u ta tio n s  M P E -g rap h s  SU (3)-fac to rs

The SU(3) m atrix  elements for the  graphs w ith meson- 
pair vertices, the  so-called M PE-graphs Fig. 4 and 
Fig. 5 are, using the cartesian-octet representation  in sec­
tion  II C, given by

M (1-p a ir)( j , n ; i , m)  = E  Hpair(j, i, s) O (q,p ,s )  
p,q,r,s

x H 2 (m ,r ,q )  H i(r , m ,p ) (3.1) 

'
M (2-pair)(j,n ; i, m) =  5 3  Hpair (j, i, s) O (q ,p ,s)

p,q,r,s=1

x O (q ,p ,r )  Hpair (n, m ,p )  (3.2)

Again, like in the  OBE-case, the  num erical values of 
the  SU(3) m atrix  elem ents for M PE  can be com puted 
straightforw ardly  m aking a com puter program .

IV . B R O K E N  S U (3)-C O U P L IN G S  A N D  F O R M  
F A C T O R S

A. B roken  SU (3) B B M -couplings

In our models, breaking of the  SU(3) sym m etry  is in­
troduced  in several places. F irst of all, we use the phys­
ical masses for the baryons and mesons. Second, we al­
low for the fact th a t the A and S 0 have the same quark 
content, and so there is an appreciable mixing between 
the isospin-pure A and S 0 sta tes [12]. A lthough exact 
SU(2) C SU(3) sym m etry requires th a t fAAn0 =  0, A -S 0 
mixing and the in teraction  S 0 ^  A +  n 0 result in a non­
zero coupling constant for the physical A-hyperon, de­
rived by Dalitz and von Hippel [12]. This A -  S 0-mixing 
leads also to  a non-zero coupling of the A to  the other 
I  = 1  mesons: p(760), a0(980), a 1(1270), as well as to  the
I  =  1-pairs. For the details of these OBE-couplings see 
e.g. [4], equations (2.15)-(2.17). The corresponding so- 
called C SB -potentials are included in the ESC-m odel for 
OBE, TM E, and M PE.

In paper I of this series we have shown th a t the NNM- 
coupling constants are described p re tty  well by the 3P 0 
m echanism  [8 , 17, 18]. In th is paper we use the predic­
tions of the  3P 0-model for the F / ( F  +  D )-ratios as well. 
Therefore, it is m ost n a tu ra l to  use for the  description 
of a possible flavor sym m etry breaking of the  coupling 
constants the  3P 0 m echanism  as well, like in [4]. In [4] 
it is argued th a t a sym m etric trea tm en t of the ‘m oving’- 
quarks and the pair-quarks in the  3P 0-coupling process is 
appropriate, since th is leads to  a covariant vertex. There­
fore, in [4] the  3P 0-H am iltonian for the B B M  -couplings 
is taken  as follows

H i  =  j  d3x J  d3y F (x -  y) •

x [j (x)O gqq(x)](1) ® [j (y )Ogqq(y )](2) (4.1)

where the quark-field operators are vectors in flavor­
space, w ith com ponents qi =  (u, d, s) and j  =  (u, d, j) . 
(In the  following we will refer to  the non-strange quarks 
u and  d as n-quarks.) I t is understood  in (4.1) th a t the 
first factor creates or annihilates a quark-pair, whereas 
the second factor ‘moves’ a quark  from the baryon into 
the meson or vice versa. O is a m atrix  in quark-flavor 
space, which, supposing no quark-m ixing, is diagonal. 
However since it will in general break SU(3)- and SU(2)- 
sym m etry by using the form

(4.2)

where the  pair-creation  constants Yu, Yd, and ys in prin­
ciple could be unequal. The CSB described above is on 
the quark-level due to  yu =  Yd. For a more detailed de­
scription of some properties of the H am iltonian in (4.1) 
and (Oqq)i,j we refer to  [4].

/ Yu 0 0

(Oqq )i,j = 0 Yd 0

\ 0 0 Ys
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Here, we assume th a t there is, also ’flavor-symmetry- 
breaking’ (FSB) of the  ’m edium  strong ’ kind, i.e. Yn =  
Yu =  Yd =  Ys . We introduce th is m edium  strong SU(3)- 
breaking according to  the  3P0-model by a m odification of 
the sj-coupling, using the ra tio  A FSB =  Ys/Y n -  1. For 
A FSB =  0 there is no SU(3)-breaking, while for A FSB =
0 there  is.

The I  =  1-meson couplings for N N  are determ ined in 
the  process of NN-fitting. This fixes Yn . In the  coupling 
of the I  =  1/2-mesons, K , K  * ,k , , only one sj-o p era to r 
is active and the SU(3)-breaking of the coupling is given 
by

A-9ANK =  A p s ß  9ANK , (4.3)

and com pletely sim ilar expressions for A g sNK, AgsAK , 
and A g s s K . Here, ( a NK etc. are calculated as usual in 
term s of gNNn and the SU(3)-scheme w ith a PV. Similar 
formulas we used for the SU(3)-breaking in the case of 
the  vector, axial-vector, and scalar mesons.

In the case of the  I  =  0-mesons two ssj-operators are 
active in the  baryon-baryon coupling. Now, the I  =  0- 
mesons have a nn- and a s j-  com ponent. In our scheme 
only the coupling of the ss is affected by the SU(3)- 
breaking. Therefore, it is n a tu ra l to  transform  first to  the 
so-called ’ideal’ qj-basis, applying the SU(3)-breaking, 
and transform  back to  the  physical basis. This scheme is 
as follows:

a. The 1 =  0 \nn) =  \uu +  dd)/y/2- and  the — |s j)- 
sta tes are in S U (3) linear com binations of the {1} 
and {8}-octet states. Likewise, the  coupling of the 
nn- and  s j-q u ark  pairs to  baryons are the  same 
linear com binations, i.e.

9nn =  cos B/ </i +  sin B/ gs ,
9sq =  -  sin B/ 9i +  cos B/ 98 , (4.4)

where cos 0/ =  2 /3 , and sin 6 1  =  \fTfZ.

b. Since for the sj-coupling process two strange quark  
pairs are involved, and none in the  nn-coupling, the 
FSB is given on the level of the quark-pair coupling 
by:

9nn ^  gnn , 9sq ^  (1 +  A FSB) gsq . (4.5)

c. The transla tion  of this breaking to  the level of the 
{1} and {8}-octet couplings is the  inverse tran s­
form ation of (4.4), and from there to  the  physi­
cal mesons. For example in the  case of the  vector 
mesons we have

9u =  cos ABv 9 V +  sin ABv 9 8  ,
9 0 =  -  sin ABv 9V +  cos ABv 9s , (4.6)

where ABV =  BV -  BI . The similar procedure is 
used for the pseudoscalar, scalar, and axial-vector 
mesons.

This breaking applies to  the NNM-, YNM-, and YYM- 
couplings, containing the free param eter A PS for the 
pseudoscalar mesons, and one param eter A V which is 
used for the  vector, axial-vector, and scalar mesons.

We note th a t th is breaking som ewhat differs from th a t 
used in NSC97 [4], which was based on an SU(6 )W- 
scheme. The problem  w ith the  la tte r, from our viewpoint 
is, th a t  the sta tes of for exam ple the vector nonet are a 
m ixture of W  =  0 and W  =  1, m aking the implemen­
ta tio n  of SU (3)-breaking less straightforw ard as in the 
scheme described above.

T he im plem entation of this scheme in practice is done 
as follows. We sta rt, for example in the case of the  vec­
to r mesons for the  g-couplings, w ith the param eter set 
(9P, 9w,BV , a V ) and com pute all couplings in the usual 
SU(3)-scheme, giving ( NNp,9 s s P, etc. This defines the 
singlet {1} couplings

91 =  [<L -  sin Bv 9s] /  cos Bv  ,

where the  octet {8} coupling for nucleons is given by 
g8 =  (4 a v  — l)gN N p/V 3, and sim ilarly for A, E, and S. 
Then, we com pute ( nn and  gsq using (4.4). Subsequently 
we com pute the sym m etry  breaking by the transform a­
tion  etc. as described above, and finally we com pute the 
coupling constants 9u , 9 0 , etc.
We finish th is discussion by noticing th a t for the I  =  1- 
mesons n, p, a0, a 1 for all baryon couplings 9 =  9 , because 
then  only n-quarks are ’active’.

B . Form  Facto rs

Also in th is work, like in the NSC97-models [4], the 
form factors depend on the SU(3) assignm ent of the 
mesons, In principle, we introduce form factor masses 
A8 and A1 for the  {8} and  {1} m em bers of each meson 
nonet, respectively. In the application to  YN  and Y Y , 
we allow for SU(3)-breaking, by using different cut-offs 
for the  strange mesons K , K  *, and k. Moreover, for the
I  =  0-mesons we assign the cut-offs as if there were no 
meson-mixing. For example we assign A 1 for n ', u , e, and 
A8 for n, ÿ, S  , etc. For the  axial-mesons we use a single 
cut-off Aa .

V . ESCÜ4-M ODEL: F IT T IN G  NN © YN-D A TA

Like in the  NN-fit, described in I, also in the  sim ulta­
neous x 2-fit of the  NN- and  YN-data, it appeared again 
th a t the  OBE-couplings could be constrain t successfully 
by the ’naive’ predictions of the Q PC-m odel [17]. Al­
though these predictions, see I, section IV, are ’b a re ’ 
ones, we tried  to  keep during the searches m any OBE- 
couplings ra th e r closely in the  neighborhood of the  pre­
dicted values. Also, it appeared th a t we could either fix 
the F / ( F  +  D )-ratios to  those as suggested by the Q PC- 
model, or apply the same restrain ing s tra tegy  as for the 
OBE-couplings.
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In the sim ultaneous x 2-fit of the  NN- and YN-data a 
single set of parameters was used. Of course, it is to  be 
expected th a t  the  accurate and very num erous N N -data 
essentially fix m ost of the  param eters. Only some of the 
param eters, for example certain  F / ( F  +  D )-ratios, are 
influenced by the YN-data.

A. P a ra m e te rs  and  N ucleon-nucleon  F it

For the cut-off masses A we used as free param eters 
A p , ACV, AV , and AA. The I  =  0 cut-off masses for the 
pseudoscalar and scalar mesons were fixed to  AP =  900 
MeV, and AS «  1100 MeV.

The trea tm en t of the broad  mesons p and  e is sim­
ilar to  th a t in the  OBE-m odels [3, 19]. For the p- 
meson the same param eters are used as in these refer­
ences. However, for the e =  f 0(760) assum ing m e =  760 
MeV and  r  =  640 MeV the B ryan-G ersten param e­
ters [20] are used. For the chosen mass and w idth  they 
are: m 1 =  496.39796 MeV, m 2 =  1365.59411 MeV, and 
ß i =  0.21781, ß 2 =  0.78219. The ’m ass’ of the  diffractive 
exchanges were all fixed to  m P =  309.1 MeV.

Sum m arizing the param eters we have for N N :

1. Q PC-constrained: 9n n p ,9n n u ,
f NNp, f NNu, f NNai, 9ao , 9NNe, 9NNA2 , 9NNP ,

2 . P air couplings: 9n N(i i ), , f NN(nn)i, 9NN(np),,
9NNnw, 9NNnn, 9NN^e,

3. Cut-off masses: Ap , Ag", AS , AV, AA.

O f course, also the couplings for the pseud-scalar mesons 
f NNn, fNNn' were fitted. The pair coupling 9n n ( n )0 was 
kept fixed a t a small, bu t otherwise a rb itra ry  value.

The N N -data used are the same as in I, and we refer 
the  reader to  th is paper for a description of the  employed 
phase shift analysis [21, 22]. Differences w ith I are th a t 
here we did not fit the  NN-low energy param eters and 
the deuteron binding energy explicitly.

B. P a ra m e te rs  and  H y p ero n -n u c leo n  F it

All ’b e s t’ low-energy YN-data are included in the fit­
ting, This is a selected set of 35 low-energy YN-data, 
the  same set has been used in [3] and [4]. We added 3 
(prelim inary) to ta l S + p  X-sections from the recent KEK- 
experim ent E289 [23]. In section VIII these are given to ­
gether w ith the results. Next to  these we added ’pseudo­
d a ta ’ for the  Ap and AA scattering  leng th ’s and effective 
ranges, in fm:

ôAp(1S 0) =  -1 .9 5  ±  0.10  , r Ap(1S 0) =  2.90 , 

ôAp(3S 1) =  - 1.86 ±  0.10  , r Ap(1S 0) =  2.70 , 

aAA(1S 0) =  -3 .0 0  ±  0.10 , (5.1)

The Ap-values which are suggested by the experience in 
several hyper-nuclear applications of the NSC97-models.

Also, during the fitting checks were done to  prevent 
the occurrence of bound states. Param eters, typically 
strongly influenced by the YN-data, are

1. F / ( F  +  D )-param eters: a PV, am , a S ,

2. SU (3)-sym m etry breaking: A FSB.

Notice th a t the  strange octet-m esons K  etc. were given 
the same form factors as their non-strange companions. 
So, because of YN we have introduced 4 ex tra  free pa­
ram eters. We notice th a t the  need to  avoid bound sta tes 
in the YN and YY system s has in particu larly  some influ­
ence on the trio  9e, 9^, and 9P . O f particu lar im portance 
of th is was the in troduction of the zero in the  scalar- 
meson form factors, see paper I for a detailed descrip­
tion. Like in I, also here we used a fixed zero by taking 
U =  750 MeV.

V I. C O U P L IN G  C O N ST A N T S, F / ( F  +  D) 
R A T IO S, A N D  M IX IN G  A N G LES

Like in paper I, we constrained the OBE-couplings by 
the ’naive’ predictions of the Q PC-m odel [8]. We kept 
during the searches all OBE-couplings in the neighbor­
hood of these predictions, bu t a little  less so th an  in 
paper I. The same has been done for all a  =  F / ( F  +  D )- 
ratios, i.e. for BBM- and the BB-Pair-couplings. In fact, 
all F / ( F  +  D )-ratios were fixed, except the ra tio  am  for 
vector mesons and a S for the scalar mesons.

The mixing for the pseudoscalar, vector, and scalar 
mesons, as well as the  handling of the  diffractive poten­
tials, has been described elsewhere, see e.g. [3, 4]. The 
mixing etc. of the axial-vector mesons is com pletely the 
same as for the vector etc. mesons, and also need not be 
discussed here.

In Table III we give the fitted ESC04 meson couplings 
and param eters.

In Table IV  we com pare the fitted  meson coupling con­
stan ts  w ith the ’naive’ predictions of the  QPC-m odel. 
For the Q PC -predictions in Table IV, see paper I. One 
sees th a t the fitted  param eters are ra th e r close to  those 
of the  QPC-m odel, and even more so th an  in paper I. 
Notice th a t we om itted  here the  pion coupling, which 
requires a different y m  factor in the Q PC-m odel, see re­
m arks in I. Also, we see th a t the deviation between the 
scalar and vector couplings from the Q PC-m odel rela­
tions, 9e -  9W «  3 (9a0 -  9p), which seems a purely isospin 
factor. In Table V the SU(3) singlet and octet couplings 
are listed i.e. g etc., and also F / ( F  +  D )-ratios and mix­
ing angles.

In Table VI and in Table VII we list the couplings 
of the physical mesons to  the nucleons (Y =  1), and 
the hyperons w ith Y  =  0. These were com puted using 
the FSB-scheme, described above. We found (ESC04a) 
A f s b  (P V ) =  -0 .2 5 8 , and A f s b  (V, S, A) =  -0 .267 .

In Table VIII we listed the  fitted Pair-couplings for the 
M PE-potentials. We recall th a t only O ne-pair graphs
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TABLE III: Meson couplings and parameters employed in the 
ESC04-potentials. Coupling constants are at k2 =  0. An 
asterisk denotes that the coupling constant is not searched, 
but constrained via SU(3) are simply put to some value used 
in previous work. The used widths of the p and e are 146 
MeV and 640 MeV respectively.

meson mass (MeV) g /V 47T f / V 4tt A (MeV)
n 138.04 0.2631 833.63
n 548.80 0.1933* ,,
n' 957.50 0.1191 900.00
p 770.00 0.7800 3.4711 839.53
0 1019.50 -0.3788 -0.0494* ,,
w 783.90 3.0138 0.4467 869.84
ai 1270.00 2.5426 945.66
fi 1420.00 0.8896* ,,
fi 1285.00 1.2544 ,,
ao 962.00 0.9251 1159.88
fo 993.00 -0.8162 ,,
e 760.00 3.4635 1101.61

a2 309.10 0.0000
f 2 309.10 0.0000
f 2' 309.10 0.0000

Pomeron 309.10 1.9651

TABLE IV: NN+ YN: ESC04 Couplings and 3P°-Model Re­
lations.

Meson TM [fm] X m YM 3Po ESC04

p (770) 0.56 1/2 1.53 g == 0.78 g =  0.78

w(783) 0.56 3/2 1.53 g == 2.40 g =  3.01

a 0(962) 0.56 VZ/2 1.53 g = 0.79 g =  0.92

e(760) 0.56 3v/3/2 1.53 g = 2.11 g =  3.46

ai(1270) 0.56 3 ^ 1.53 g = 2.73 g =  2.54

are included, in order to  avoid double counting, see pa­
per I. The F / ( F  +  D )-ratios are all fixed, assuming 
heavy-boson dom ination of the pair-vertices. The ra­
tios are taken from the Q PC-m odel for QQ-system s w ith 
the same quantum  num bers as the dom inating boson. 
The B B -Pair couplings are com puted, assum ing unbro­
ken SU(3)-symmetry, from the N N -Pair coupling and the 
F / (F  +  D )-ra tio  using SU(3).

Unlike in [24], we did not fix pair couplings using 
a theoretical model, based on heavy-meson sa tu ra tion

TABLE V: Coupling constants, F /(F  +  D)-ratio’s, mixing 
angles etc. The values with *) have been determined in the fit 
to the YN-data. The other parameters are theoretical input 
or determined by the fitted parameters and the constraint 
from the NN-analysis.

mesons {1} {8} F /(F  +  D) angles

ps-scalar f 0.1852 0.2631 a p v  == 0.4668*) Qp =  -23.00°

vector g 2.6218 0.7800 aV = 1.0 0v =  37.50°

f 0.3845 3.4711 a™ = 0.2760*)

axial g 1.5023 2.5426 a a = 0.2340 Qa =  -23.00° *)

scalar g 3.1688 0.9251 a s  = 0.8410 Qs  =  40.32o *)

diffractive g 1.9651 0.0000 au  = 1.000 ^ u  =  0.0° *)

and chiral-sym m etry. So, in addition to  the 14 param ­
eters used in [24] we now have 6 pair-coupling fit pa­
ram eters. In Table VIII the fitted  pair-couplings are 
given. Note th a t the (n n )0-pair coupling gets contribu­
tions from the {1} and the {8s} pairs as well, giving in 
to ta l g(nn) =  0.10, which has the same sign as in [24]. 
The f (n n )1 -pair coupling has opposite sign as com pared 
to  [24]. In a model w ith a more complex and realistic 
m eson-dynam ics [25] th is coupling is predicted as found 
in the present ESC-fit. The (np)i-coupling agrees nicely 
w ith A 1 -saturation , see [24]. We conclude th a t the pair- 
couplings are in general not well understood, and deserve 
more study.

In the ESC-m odel described here, is fully consis­
ten t w ith SU (3)-sym m etry using a straightforw ard ex­
tension of the NN-model to  YN  and YY. For example 
g(np)1 =  gA8v p , and besides (np)-pairs one sees also th a t 
K K * ( I  =  1)- and K K * ( I  =  0)-pairs contribute to  the 
N N  potentials. All F / ( F + D ) - r a t io ’s are taken  fixed with 
heavy-meson sa tu ra tio n  in mind. The approxim ation we 
have m ade in th is paper is to  neglect the baryon mass 
differences, i.e. we pu t m A =  =  m N . This because 
we have no t yet worked out the  formulas for the inclu­
sion of these mass differences, which is straightforw ard 
in principle.
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TABLE VI: Coupling constants for pseudoscalar and vector 
meson Y =  0 and Y  =  ±1 exchanges.

M NNM AAM A S M  S S M  A N M  SNM

n g 3.57602 CSB 2.47895 4.23203
f 0.26306 CSB 0.16196 0.24559

n f 0.19333 -0.02028 — 0.21534

n' f 0.11908 0.14213 — 0.11671

K g — — — — -3.22933 0.19837
f — — — — -0.21786 0.01296

p g 0.78000 CSB — 1.56000 — —
f 3.47113 CSB 2.90094 1.91768 — —

0 g -0.37884 -0.94125 — -0.94125 — —
f -0.04944 -1.34461 — 1.07066 — —

w g 3.01376 2.21121 — 2.21121 — —
f 0.44671 -1.40149 — 2.04507 — —

K * g — — — — -0.99079 -0.57203
f — — — — -2.28171 1.13927

a1 g 2.54264 CSB 2.24770 1.19215 — —

fi g 0.88961 -0.66726 — 2.57849 — —

f 1' g 1.25438 1.40489 — 1.09111 — —

Ki g — — — — -1.58137 0.99042

V II. ESC04-M ÜDEL , NN-RESULTS 

A. P aram eters  and Nucleon-nucleon F it

For a more detailed discussion on the NN-fitting we 
refer to I. Here, we fit only to the 1993 Nijmegen rep­
resentation of the x 2-hypersurface of the NN scattering 
data below Tlab =  350 MeV [21, 22]. This in contrast to
I where also low-energy parameters are fitted for np and 
nn. In this simultaneous fit of NN and YN, we obtained 
for the phase shifts a x 2/N d a ta  =  1.22. In Table III the 
meson parameters are given for the ESC04a-model. In 
Table IX the distribution of the x 2 is shown for the ten 
energy bins, which can be compared with a similar table

TABLE VII: Coupling constants for scalar meson and ‘diffrac­
tive’ Y  =  0 and Y  =  ±1 exchanges. Nomenclature scalar 
mesons: S =  a°(962), e =  f° (760), S* =  f° (993), k = 
K* (900).

M NNM AAM ASM S S M  A N M  S N M

S g 0.92511 CSB 0.16975 1.55621 —

S* g -0.81620 -1.36993 — -1.23870 —

e g 3.46354 2.58418 — 2.79258 —

k g — — — — -1.05063 -0.46283

Ä2 g 0.00000 CSB 0.00000 0.00000 —

P  g 1.96510 1.96510 — 1.96510 —

K 2** g — — — — 0.00000 0.00000

TABLE VIII: Pair-meson coupling constants employed in the 
ESC04 MPE-potentials. Coupling constants are at k2 =  0.

j pc SU(3)-irrep (a/3) g/Air F / (F  + D)
0++ W g(nn)° — —

0++ ,, g(™) — —
0++ {8}s g(nn) -0.1860 1.000

1— {8}a g(nn)i -0.0024 1.000

f  (nn)i 0.1310 0.400
1++ ,, g(np)i 0.8864 0.643
1++ ,, g(na) -0.0241 0.643
1++ ,, g(nP  ) 0.0 —
1+- {8}s q (t y u j) -0.1722 0.467

in paper I. Also, for a comparison with paper I, and for 
use of this model for the description of NN, we give in Ta­
bles X and XI the nuclear-bar phases for pp in case I  =  1, 
and for np in case I  =  0. The deuteron was not fitted, 
and we have for the binding energy E B =  2.224797MeV, 
which is very close to the E B (experim ent) =  2.224644.

V III. ESC04-M ÜDEL , YV-RESULTS

In combined NN and YN fit, the used YN scattering 
data from Refs. [26]-[31], are shown in Table X II. Since 
we know from the experience with the NSC97 models 
rather well the favored s-wave scattering lengthes for A N , 
we added values for these as pseudo-data, see section VB.
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TABLE IX: x2 and x2 per datum at the ten energy bins for the 
Nijmegen93 Partial-Wave-Analysis. Ndata lists the number 
of data within each energy bin. The bottom line gives the 
results for the total 0 — 350 MeV interval. The x 2-access for 
the ESC04-model in the NN +  Y N -fit is denoted by Ax2 and 
Ax2, respectively.

Tlab J data o t
o Ax2 o t
o

Ax2

0.383 144 137.5549 22.9 0.960 0.159
1 68 38.0187 53.2 0.560 0.783
5 103 82.2257 7.1 0.800 0.068
10 209 257.9946 53.1 1.234 0.183
25 352 272.1971 62.5 0.773 0.177
50 572 547.6727 240.3 0.957 0.420
100 399 382.4493 73.6 0.959 0.184
150 676 673.0548 104.4 0.996 0.154
215 756 754.5248 214.4 0.998 0.284
320 954 945.3772 333.1 0.991 0.349

Total 4233 4091.122 1164.6 0.948 0.268

The NN  interaction puts very strong constraints on most 
of the parameters, and so we are left with only a lim­
ited set of parameters which have some freedom to steer 
the Y N  channels. Like in the NSC97 models we exploit 
here (i) the magnetic vector-meson F / ( F  +  D) ratio a y ,
(ii) the scalarmeson F / ( F  +  D) ratio a S, and the flavor 
symmetry breaking param eterAFSB. We did not break 
SU(3) by introducing independent cut-off parameters for 
the strange mesons K , K * etc., but AK =  An and similar 
for the other meson-nonets. The fitted parameters are 
given in Table III and Table V III.

The aim of the present study was to construct a real­
istic potential model for baryon-baryon with parameters 
tha t are optimal theoretically, but at the sametime de­
scribes the baryon-baryon scattering data very satisfac­
tory.

This model can then be used with a great deal of con­
fidence in calculations of hypernuclei and in their predic­
tions for the S =  —2, -3 ,  and —4 sectors. Especially 
for the latter application, these models will be the first 
models for the S < —1 sector to have their theoretical 
foundation in the NN  and YN  sectors.

The x 2 on the 38 YN  scattering data for the ESC04 
model is given in Table X II. The capture ratio at rest, 
given in the last column of the table, for its definition see
e.g. [4]. This capture ratio turns out to be rather con­
stant in the momentum range from 100 to 170 MeV/c. 
Obviously, for very low momenta the cross sections are 
almost completely dominated by S waves. For a discus­
sion of the capture ratio at rest r R see [32, 33, 34]. We 
obtained r R =  0.473, which is close to the experimental

TABLE X: ESC04 pp and np nuclear-bar phase shifts in
degrees.

Tlab 0.38 1 5 10 25

J data 144 68 103 290 352

Ax2 24 53 7 53 62

1So 14.62 32.62 54.71 55.07 48.39
3Si 159.39 147.77 118.23 102.70 80.78
£l 0.03 0.11 0.66 1.13 1.71

3Po 0.02 0.13 1.56 3.69 8.58
3Pi -0.01 -0.08 -0.87 -2.01 -4.85
1Pi -0.05 -0.19 -1.52 -3.12 -6.46
3P2 0.00 0.01 0.21 0.64 2.44
£2 -0.00 -0.00 -0.05 -0.19 -0.79

3Di 0.00 -0.01 -0.19 -0.69 -2.85
3D2 0.00 0.01 0.22 0.85 3.72
1D2 0.00 0.00 0.04 0.16 0.67
3D3 0.00 0.00 0.00 0.00 0.01

£3 0.00 0.00 0.01 0.08 0.56
3F2 0.00 0.00 0.00 0.01 0.10

3F3 0.00 0.00 -0.00 -0.03 -0.22
1F3 0.00 0.00 -0.01 -0.07 -0.42
3F4 0.00 0.00 0.00 0.00 0.02

£4 0.00 0.00 0.00 -0.00 -0.05

value rR p =  0.468 ±  0.010.
The E+p nuclear-bar phase shifts as a function of en­

ergy are given in Table X III. Notice tha t the 3Si-phase 
shows repulsion, except for very low energies. This means 
tha t the the potential has a weak long range attractive 
tail.

The A N  nuclear-bar phase shifts as a function of en­
ergy are given in Table XIV. The 3Si-phase shows that 
there is a resonance below the E N  -threshold, the so- 
called analogue of the deuteron. This signals the fact 
tha t in the E N (3S 1,1  =  1/2)-state there is a strong at­
traction.

In Fig. 6 we plot the total potentials for the S-wave 
channels AN ^  A N , AN ^  E N , and E N  ^  E N . 
The same is done in Fig. 7, Fig. 8 , and Fig. 9 for re­
spectively the OBE-, TME-, and MPE-contributions. In 
Fig. 10 and Fig. 11 we show for the same channels the 
OBE-contributions from the different types of mesons: 
the pseudoscalar, the vector, the scalar, and the axial- 
vector mesons. From these figures one can notice e.g. 
(i) the total potentials are dominated by the OBE- and 
MPE-contributions, (ii) the OBE- and MPE-potentials 
are often opposite to each other. For example, the AN
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TABLE XI: ESC04 pp and np nuclear-bar phase shifts in
degrees.

Tlab 50 100 150 215 320

J data 572 399 676 756 954

Ax2 240 74 104 214 333

1So 38.40 24.05 13.51 2.79 -10.60
3Si 63.01 43.67 31.44 19.93 6.42
(1 1.94 2.18 2.56 3.22 4.57

3Po 11.65 9.84 5.19 -1.31 -10.86
3Pi -8.23 -13.19 -17.25 -21.85 -28.09
1Pi -9.75 -14.12 -17.78 -22.09 -28.12
3P2 5.75 11.02 14.21 16.29 16.96
(2 -1.68 -2.68 -2.97 -2.83 -2.17

3Di -6.58 -12.61 -17.06 -21.36 -26.14
3D2 8.92 17.08 21.90 24.70 24.83
1D2 1.66 3.80 5.88 8.09 10.16
3D3 0.18 1.05 2.15 3.42 4.60
(-3 1.62 3.52 4.88 6.02 6.97

3F2 0.32 0.74 0.98 0.97 0.13
3F3 -0.66 -1.46 -2.09 -2.74 -3.73
1F3 -1.13 -2.20 -2.90 -3.58 -4.65
3F4 0.10 0.42 0.88 1.57 2.71
(4 -0.19 -0.52 -0.81 -1.12 -1.46
3 G3 -0.27 -0.99 -1.89 -3.10 -4.88
3 G 4 0.72 2.13 3.54 5.16 7.23
1G4 0.15 0.40 0.65 1.00 1.60
3 G5 -0.06 -0.21 -0.36 -0.49 -0.58
(5 0.21 0.72 1.26 1.91 2.75

elastic potentials are attractive due to the sizeable attrac­
tive contributions from the M PE-potentials overcoming 
the OBE ones.

Finally, all ESC-potentials described in this paper are 
available on the Internet [35].

IX. B R IEF COM PA RISO N  ESC04 MODELS

In this section we display some global comparison be­
tween the different ESC04a-d models emerging from the 
different options, mentioned above.

In Table XV we give the FSB- and aPV-parameters and 
the x 2 obtained in the simultaneous NN © Y N -fitting.

In Table XVI we give the F / ( F  +  D )-ratio’s,and QS. 
The latter because in these models there is no imposed 
constraint on the parameters (a S , QS ). The vector mixing

TABLE XII: Comparison of the calculated and experimental 
values for the 38 YN-data that were included in the fit. The 
superscipts RH and M denote, respectively, the Rehovoth- 
Heidelberg Ref. [26] and Maryland data Ref. [27]. Also in­
cluded are 3 S+p X-sections at piab — 400, 500, 650 MeV from 
Ref. [23]. The laboratory momenta are in MeV/c, and the to­
tal cross sections in mb.

Ap ^  Ap X2 — 0.8 Ap ^  Ap X2 — 3.3
PA &RHv exp &th PA &Mv exp O'th

145 180±22 182.1 135 209.0±58 195.6
185 130±17 135.7 165 177.0±38 157.4
210 118±16 112.6 195 153.0±27 125.9
230 101±12 97.1 225 111.0±18 100.8

250 83± 9 84.4 255 87.0±13 81.0
290 57± 9 63.2 300 46.0±11 59.0

S+p ^  S+p X t
o 4. 7 S - p ^  S - p .34.22X

Ps+ ^exp &th Ps- & exp &th

145 123±62 104.3 142.5 152±38 133.7
155 104±30 94.3 147.5 146±30 128.9
165 92±18 85.4 152.5 142±25 124.4
175 81±12 77.4 157.5 164±32 120.0

400 75±25 26.6 162.5 138±19 115.9
500 26±20 24.9 167.5 113±16 111.9
650 52±40 21.9

S - p ^  S 0n .46.22X S - pi ^  An X2 — 4.4
Ps+ &exp &th Ps- & exp &th

110 396±91 183.2 110 174±47 219.9
120 159±43 160.0 120 178±39 188.7
130 157±34 141.1 130 140±28 163.6
140 125±25 125.5 140 164±25 143.0
150 111±19 112.3 150 147±19 126.0
160 115±16 101.1 160 124±14 111.7

exp
r R  = = 0.468 ±  0.010 r R  — 0.473 X2 =  0.2

angle Qv is for all models the same. This is also the case 
for the axial mixing angle where we fixed Qa =  QPS =  
—23.0o. In this table it is remarkable tha t whereas a S 
is constant, there is a big difference w.r.t. QS. Further­
more, one notices tha t for most models «m is close to 
the estimates from static and non-static SU(6 ) [36]. As a 
final point we mention tha t the F / ( F  +  D )-ratio’s for the 
pair-couplings are very similar to the values of ESC04b, 
given above.

In Table XVII we list the AN  scattering lengths and
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TABLE XIII: ESC04 nuclear-bar S+p phases in degrees.

Ps+ 200 400 600 800 1000

Tab 16.7 65.5 142.8 244.0 364.5
40

20

01So 39.05 26.07 10.11 -4.50 -17.46
3S1 1.26 - 0.21 -3.75 -6.80 - 10.11 -20

(1 -3.38 -4.54 -2.89 0.57 3.82
V]

[MeV -40

>3 Po 5.91 10.76 3.87 -7.62 -19.84
1P1 4.62 21.50 35.55 38.36 35.06 -60

3 P1 -3.28 -9.20 -13.96 -17.52 -19.59 -80

3 P2 1.29 7.61 14.89 19.30 20.58
-100

(2 -0.44 -1.26 -2.72 -2.61 -0.20
3D 1 0.34 1.54 1.73 -0.63 -5.70 -120

1D2 0.36 2.22 5.276 8.20 9.51
3D2 -0.53 -2.81 -5.48 -8.49 -11.95
3D 3 0.06 0.97 3.18 5.91 8.40 500

400

TABLE XIV: ESC04 nuclear-bar Ap phases in degrees.

PA 100 200 300 400 500 600 633.4

Tab 4.5 17.8 39.6 69.5 106.9 151.1 167.3

1So 22.30 29.20 27.49 22.59 16.68 10.62 8.65
3S1 17.72 26.17 28.37 28.95 32.25 55.52 102.55
(1 0.07 0.30 0.48 0.25 -1.18 -8.43 17.32

3Po 0.03 0.15 0.06 -0.79 -2.74 -5.66 -6.76
1P1 -0.02 -0.12 -0.52 -1.45 -3.01 -5.09 -5.86
3P1 0.03 0.13 0.14 -0.17 -0.90 -1.93 -2.23
3P2 0.13 0.89 2.41 4.32 6.10 7.47 7.84
(2 0.00 0.00 -0.04 -0.14 -0.30 -0.52 -0.64
3D1 0.00 0.02 0.12 0.40 1.04 3.11 2.19
1D2 0.00 0.07 0.24 0.74 1.54 2.51 2.84
3D2 0.00 0.06 0.30 0.82 1.62 2.53 2.82

effective ranges. Here, (as , r s) are these quantities for 
A N (XS0) and (at , r t ) for A N ( 3S 1). Here we repeat the 
different options used to distinguish the different models. 
In Table XVIII we list the scattering lengths and effective 
ranges for E+p and AA.

Total V(AN -> AN) ESC04 Total V(AN -> ZN) ESC04
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FIG. 6: Total potentials in the partial waves 1S0 and 3S1, for 
I  — 1/2- and I  — 3/2-states.

X. G-M A TRIX IN T ER A C TIO N S AND 
H Y PER N U C LEI

A. P roperties  of A N  and S N  G -m atrices

The free-space YN  scattering data are too sparse to 
discriminate clearly the YN  interaction models. Then, it 
is very helpful to test the interaction models in analy­
ses of various hypernuclear phenomena. Effective YN in­
teractions used in models of hypernuclei can be derived 
from the free-space YN  interactions most conveniently 
using the G-matrix theory. In the previous work [4], 
the G-matrix results were used as an im portant guid­
ance to discriminate especially the spin-dependent parts 
in the interaction models. Here, the versions a ~  f of the 
NSC97 model were designed so as to specify their differ-
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OBE V(AN -> AN) ESC04 OBE V(AN -> ZN) ESC04 TPS V(AN -> AN) ESC04 TPS V(AN -> ZN) ESC04

x [fm]

OBE V(ZN -> ZN) ESC04
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OBE V(Z+P-> Z+P) ESC04

x [fm]

TPS V(ZN -> ZN) ESC04

x [fm]

TPS V(Z+P-> Z+P) ESC04

x [fm] x [fm] x [fm] x [fm]

FIG. 7: OBE potentials in the partial waves 1So and 3S1, for 
I  — 1/2- and I  — 3/2-states.

FIG. 8: TPS potentials in the partial waves 1So and 3S1, for 
I  — 1/2- and I  — 3/2-states.

ent strengths of AN  spin-spin interactions, and among 
them  those of NSC97e and NSC97f were demonstrated 
to be consistent with the hypernuclear data. Afterwards, 
the plausibility of our approach has been confirmed by 
successful calculations for s-shell hypernuclei [37] [38] [39] 
using NSC97e/f or their simulated versions.

Let us perform the G-matrix analyses for ESC04a-d in 
the same way. The G-matrix equations for YN  pairs in 
nuclear m atter are solved with the simple QTQ prescrip­
tion (the gap choice) for the intermediate-state spectra, 
which means tha t no potential term  is taken into account 
in the off-shell propagation. As discussed for NSC97 [4], 
the QTQ prescription is accurate enough to investigate 
properties of YN  G-matrix interactions. The nucleon en­
ergy spectra in the YN G-matrix equation are obtained 
from the NN  G-matrices for ESC04(NN), where the phe-

nomenological three-nucleon interaction (TNI) is taken 
into account so as to assure nuclear saturation. The de­
tails for TNI are explained in the next subsection.

In this work, the properties of the G-matrix interac­
tions derived from ESC04a-d models are compared of­
ten with those of NSC97e/f. The calculated values for 
NSC97e/f in this work are slightly different from those 
in [4] because of different choice of the nucleon spectra. 
Hereafter, a two-particle state with isospin (T ), spin (S), 
orbital and total angular momenta (L and J ) is repre­
sented as 2T+1,2S+1l j  . An isospin quantum  number is 
often omitted, when it is evident.

In Table XIX we show the potential energies Ua for a 
zero-momentum A and their partial-wave contributions 
Ua(2S+1L j ) at normal density p0 (kF =1.35 fm-1 ). A 
statistical factor (2 J  +  1) is included in Ua(2S+1L j ).
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FIG. 9: Pair potentials in the partial waves 1So and 3S1, for 
I  — 1/2- and I  — 3/2-states.

FIG. 10: OBE-potentials in the So partial waves, for pseu­
doscalar (PS), vector (VC), scalar (SC), and axial-vector 
(AX) exchange, in the I  — 1/2- and I  — 3/2-states.

The total contributions Ua should be compared to the 
experimental value of about -3 0  MeV. In an appear­
ance, the values for ESC04a-d seem to be rather worse 
than those for NSC97e/f. It should be noted, however, 
tha t the shallower values of Ua for NSC97e/f are ow­
ing to the strongly repulsive contributions of their P - 
state interactions. The sums of even-state contributions 
for ESC04a/b (ESC04c/d) are similar to (slightly larger 
than) those for NSC97e/f. One should notice here that 
the even-state strengths of NSC97e/f are proved to be 
attractive enough to reproduce appropriately A binding 
energies in s-shell hypernuclei [37] [38] [39]. Thus, we 
can say th a t the remarkable difference between ESC04a- 
d and NSC97e/f appears in the P -state  interactions: 
Those of ESC04a-d and NSC97e/f are attractive and re­
pulsive, respectively. If the attractive P -state interac-

tions of ESC04a-d are considered to be reasonable, one 
should take into account another repulsive contribution 
in order to reproduce the value of Ua ~  -3 0  MeV, as 
discussed later. Though there are no clear-cut data for 
AN  P -state interactions, an im portant consideration was 
given by Millener, supporting attractive P -state interac­
tions [40]. He claims th a t the attractive P -sta te  interac­
tion is consistent with the 6.0 MeV separation observed 
in the (K - ,n - ) reaction for the two (1 /2- ) states of A3C 
composed of the 12C(0+, 2+) <g> p a  configurations.

In order to see the spin-dependent features of the AN  
G-matrix interactions more clearly, it is convenient to 
derive contributions to Ua from the spin-independent, 
spin-spin, L S , and tensor components of the G matrices, 
which are denoted as U0, Uaa , Ul S , UT, respectively. 
These quantities in S  and P  states can be transformed
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TABLE XV: A f s b -, a p v -parameters, and the x 2’s for NN 
and YN.

OBE V(3S 1) AN -> AN ESC04 OBE V(3S 1) AN -> SN ESC04

3000 
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^  1500(D5
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0
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0 0.20.40.60.8 1 1.21.41.6 

x [fm]

OBE V(3S1) SN -> SN ESC04

x [fm] x [fm]

FIG. 11: OBE-potentials in the Si partial waves, for pseu­
doscalar (PS), vector (VC), scalar (SC), and axial-vector 
(AX) exchange, in the I  =  1/2- and I  =  3/2-states.

from values of Ua (2S+1L j ) using Eq.(7.1) in Ref. [4]. The 
obtained values are shown in Table XX. The S-state 
contributions U0(S) for ESC04a-d are found to be not 
remarkably different from those for NSC97e/f. The rela­
tive ratio of Ua (1S 0) and Ua(3S 1) is related to the con­
tribution Uaa (S) from the spin-spin interaction. Various 
analyses suggest tha t the reasonable strength of the S- 
state spin-spin interaction is between those of NSC97e/f. 
Then, the spin-spin parts of ESC04a-d are found to be in 
this region, though they are slightly different from each 
other.

The features of the P -sta te  interactions are indicated 
by the values of U0(P ), Uaa( P ), ULS(P ) and UT(P ) 
in Table XX. The negative (positive) values of U0(P ) 
for ESC04a-d (NSC97e/f) are due to the attractive (re­
pulsive) interactions. The spin-spin, L S  and tensor

a p v A f s b ( P V )  A f s b ( V ) x l d . A N N ) x \ Y N )
ESC04a 0.5 -0.258 -0.267 1.22 24.2
ESC04b 1.0 -0.214 -0.280 1.20 49.5
ESC04c 0.5 0.000 0.000 1.28 23.0
ESC04d 1.0 0.000 0.000 1.33 26.0

TABLE XVI: F /(F  +  D)-ratio’s for OBE-couplings, and the 
scalar-meson mixong angle 6S in degrees.

x [fm]

OBE V(3S1) S+P -> S+P ESC04

a p v ea,y m0,y O.A a s 0s
ESC04a 0.467 1.0 0.276 0.234 0.841 40.32
ESC04b 0.403 1.0 0.316 0.246 0.841 40.31
ESC04c 0.510 1.0 0.306 0.234 0.841 22.09
ESC04d 0.499 1.0 0.430 0.234 0.841 11.45

strengths of ESC04a/b are slightly weaker than those 
of NSC97e/f. On the other hand, the spin-spin and LS 
strengths of ESC04c/d are rather stronger than the oth­
ers. Let us discuss here the L S  parts more in detail, 
because the clear data of the spin-orbit splittings have 
been obtained in the 7 -ray experiments. The values of 
ULS( P ) are composed of the contributions of two-body 
SL S  interaction (attractive) and A L S  interaction (re­
pulsive). In order to compare clearly the SL S  and A L S 1 
components, it is convenient to derive the strengths of 
the A l-s potentials in hypernuclei. In the same way as 
in [4], we use the following expression derived with the 
Scheerbaum approximation [41],

U ^ ( r ) = K A - ^ l - s ,  
r dr

n
K a  =  — — ( S s l s  +  S a l s ),

3 f œ 3
S s l s , a l s = -  r  j i ( q r )  G s L S , A L s ( r )  d r  (10.1) 

q J 0

where G Sl s (r) and G a l s (r) are SLS and A L S 1 parts

TABLE XVII: A N  scattering lengths and effective ranges in 
fm.

SFB a p v 0>s a t r s n

ESC04a yes 0.5 -2.073 -1.537 2.998 2.773
ESC04b yes 1.0 -1.957 -1.689 3.156 2.823
ESC04c no 0.5 -1.946 -1.850 3.473 2.900
ESC04d no 1.0 -1.941 -1.858 3.570 3.133
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TABLE XVIII: E+p and AA scattering lengths and effective 
ranges in fm.

as at r s rt a3( AA) r s( AA)
ESC04a -4.09 -0.020 3.49 -3356 -1.149 4.482
ESC04b -2.87 +0.179 4.10 -34.20 -1.245 4.453
ESC04c -3.87 +0.077 3.72 -253.5 -1.081 4.463
ESC04d -3.43 +0.217 3.98 -28.94 -1.323 4.401

TABLE XIX: Values of Ua at normal density and partial wave 
contributions for ESC04a-d and NSC97e/f obtained from the 
G-matrix calculations with the QTQ intermediate spectra. 
All entries are in MeV.

3Si XPi 3Po 3Pi 3p 2 D UA
ESC04a -13.7 -20.5 0.6 0.2 0.5 -4.5 - 1.0 -38.5
ESC04b -13.3 - 22.6 0.5 - 0.0 0.6 -4.3 - 1.1 -40.2
ESC04c -13.9 -28.5 2.9 0.0 1.3 -6.5 -1.3 -46.0
ESC04d -13.6 -26.6 3.2 - 0.2 0.9 -6.4 -1.4 -44.1
NSC97e -12.7 -25.5 2.1 0.5 3.2 -1.3 - 1.2 -34.8
NSC97f -14.3 -22.4 2.4 0.5 4.0 -0.7 - 1.2 -31.8

of G-matrix interactions in configuration space, respec­
tively, and p(r) is a nuclear density distribution. We take 
here q =  0.7 fm- 1 . Table XXI shows the values of K a and 
S s l s ,a l s  obtained from the SL S  and A L S  parts of the 
AN G-matrix interactions calculated at kF =  1.0 fm-1 

in the cases of ESC04a-d and NSC97e/f. It is found here 
tha t the obtained values for ESC04a/b are smaller than 
those for NSC97e/f, because the SLS ( A L S ) parts of the 
former are less attractive (more repulsive) than those of 
the latter. On the other hand, the spin-orbit strengths of 
ESC04c/d are rather stronger than the others. In com­
parison of the experimental data, even the smallest K a 
value in the case of ESC04b is too large [42, 43].

In Fig. 12, the calculated values of Ua are drawn as a 
function of p/po up to the high-density region. Their S­
and P-contributions are shown in the left and right sides 
of Fig. 13, respectively. In these figures, solid, dashed, 
dotted and dot-dashed curves are for ESC04a-d, respec­
tively. For comparison, the result for NSC97f is drawn by 
the thin dashed curve. The Ua values for ESC04a-d are 
found to become far more attractive with increase of den­
sity than those of NSC97f, Comparing the partial-wave 
contributions for ESC04a-d with those for NSC97f, we 
find tha t the S -state contributions are more or less sim­
ilar to each other and the distinct difference comes from 
the P -state contributions. The difference between the P - 
state interactions in ESC04 and NSC97 models tu rn  out 
to be magnified dramatically in the high-density region.

The A effective mass MA in nuclear m atter is an im-

P/Po

FIG. 12: Calculated values of Ua as a function of p/p0 for 
ESC04a (solid curve), ESC04b (dashed curve), ESC04c (dot­
ted curve) and ESC04d (dot-dashed curve). The thin dashed 
curve is for NSC97f.

p/p,, p/p»

FIG. 13: S- and P-state contributions to Ua are shown in the 
left and right panels, respectively, as a function of p/p0. The 
solid, dashed, dotted and dot-dashed curves are for ESC04a-d, 
respectively. The thin dashed curve is for NSC97f.
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TABLE XX: Contributions to Ua at normal density from spin­
independent, spin-spin, LS and tensor parts of the G-matrix 
interactions derived from ESC04a-d and NSC97e/f. All en­
tries are in MeV.

U0(S) Uaa(S) Uo(P) Uaa(P) ULs(P) UT (P)
ESC04a -8.55 1.73 -0.27 -0.25 -0.45 0.08
ESC04b -8.96 1.44 -0.27 - 0.22 -0.41 0.10

ESC04c - 10.6 1.09 -0.19 - 0.86 -0.65 0.18
ESC04d - 10.1 1.19 - 0.20 -0.96 -0.58 0.17
NSC97e -9.55 1.06 0.38 -0.44 -0.46 0.17
NSC97f -9.18 1.71 0.52 -0.50 -0.48 0.23

TABLE XXI: Strengths of A spin-orbit splittings for ESC04a- 
d and NSC97e/f. See the text for the definitions of K a and
SSLS,ALS.

SSLS S als K a

ESC04a -24.9 12.1 13.4
ESC04b -22.3 13.2 9.5
ESC04c -36.6 10.2 27.6
ESC04d -32.7 10.1 23.6
NSC97e -26.0 9.8 16.9
NSC97f -26.9 9.5 18.1

p/p0

FIG. 14: Calculated values of m*A as a function of p/po for 
ESC04a (solid curve), ESC04b (dashed curve), ESC04c (dot­
ted curve) and ESC04d (dot-dashed curve). The thin dashed 
curve is for NSC97f.

portant quantity which is related to the property of the 
underlying AN interaction. Here, we calculate a global 
effective mass defined by

MX
M a =  ' - t ) (10 .2 )

where Ta denotes A kinetic energy. The calculated values 
of m*A =  MA / M a at normal density are 0.81 (ESC04a), 
0.79 (ESC04b), 0.77 (ESC04c), 0.74 (ESC04d), 0.67 
(NSC97e) and 0.66 (NSC97f). In Fig. 14 the calcu­
lated values of mA are drawn as a function of p/po by 
solid (ESC04a), dashed (ESC04b), dotted (ESC04c) and 
dot-dashed (ESC04d) curves. The thin dashed curve is 
for NSC97f. We find here tha t the calculated values 
for NSC97f are distinctively smaller than the values for 
ESC04a-d. The reason why the mA values for NSC97e/f 
are small is because their repulsive P -state  interactions 
contribute to the derivatives dUA/dTA as large positive 
quantities. In Ref.[44], one of authors (Y.Y.) and col­
laborators analyzed the measured A energy spectra in 
heavy hypernuclei with special attention to A effective 
masses. They concluded tha t the small value of mA ob­
tained from NSC97f leads to too broad level distances, 
and the adequate value of mA is around 0.8 at normal 
density. Thus, the mA values for ESC04a-d turn  out to 
be more reasonable than  those for NSC97 models.

TABLE XXII: Values of Ue at normal density and partial 
wave contributions for ESC04a-d and NSC97f (in MeV).

T 3 Si 1P1 3P0 3Pi 3P2 D Us
ESC04a 1/2

3/2
11.6 -26.9 2.4 2.7 -6.4 -2.0 -0.8 

-11.3 2.6 - 6.8 -2.3 5.9 -5.1 -0.2 -36.5
ESC04b 1/2

3/2
9.6 -25.3 1.8 1.6 -5.4 -2.1 -0.7 

-9.6 9.9 -5.5 -1.9 5.4 -4.6 -0.2 -27.1
ESC04c 1/2

3/2
6.4 -20.6 2.4 2.9 -6.7 -1.6 -0.9 

-10.7 6.9 - 8.8 -2.6 6.0 -5.8 -0.2 -33.2
ESC04d 1/2

3/2
6.5 -21.0 2.6 2.4 -6.7 -1.7 -0.9 

-10.1 14.0 -8.5 -2.6 5.9 -5.7 -0.2 -26.0
NSC97f 1/2

3/2
14.9 -8.3 2.1 2.5 -4.6 0.5 -0.5 

-12.4 -4.1 -4.1 -2.1 6.0 -2.8 -0.1 -12.9

Next, let us show the properties of S N  G-matrix in­
teractions. We solve here the S N  starting channel G- 
m atrix equation in the QTQ prescription. In this trea t­
ment, there appears no imaginary part, due to an energy- 
conserving S N  -AN transition. Although it is possible to 
derive the S conversion width by taking into account 
the A and N  potentials in the intermediate states, we

1
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choose not to discuss this rather complex issue in this pa­
per. In Table XXII we show the calculated values of U£ 
at normal density for ESC04a-d and NSC97f. Here, the 
U£ values for ESC04a-d are found to be far more attrac­
tive than tha t for NSC97f, because the 3S 1(SN, I  =  1/2) 
(1S 0(S N ,  I  =  1/2)) contributions for the former are re­
markably more attractive (less repulsive) than tha t for 
the latter.

It has been pointed out tha t the S-wells in nuclei might 
actually be repulsive, based on the S-atomic data [45] 
and the quasi-free spectrum of ( K - , n) reaction [46]. 
Recently, the (n- ,K - ) experiment has been performed 
in order to study the S-nucleus potentials [47]. They 
demonstrated th a t the observed spectrum can be repro­
duced with a strongly repulsive potential. The theoreti­
cal analyses for this data also indicate tha t the S-nucleus 
potential most likely is repulsive [48]. If we consider these 
analyses seriously, it is rather problematic how to under­
stand repulsive S-nucleus potentials on the basis of the 
ESC model. It should be noted, however, th a t there is 
no decisive evidence for the repulsive S-nucleus potential 
experimentally in the present.

B. Three-body and nuclear m edium  effects

A natural possibility is the presence of three-body 
forces (3BF) in hypernuclei generating effective two-body 
forces, which could (partially) solve this well-depth issue. 
Since a thorough investigation is outside the scope of this 
paper, we discuss three-body and nuclear medium effects 
here in a simple phenomenological way. As for example 
discussed in [49], three-body effects in a nuclear medium 
could be described roughly by using effective triple-meson 
vertices, like in Fig. 15. Here, the meson lines could be 
e.g. scalar-, vector-, pomeron-exchanges, etc. In view of 
the big cancellations in the two-body case for w +  P  +  e- 
potentials, one expects also similar cancellations to take 
place in Fig. 15. One also expects th a t the density depen­
dent corrections in the nuclear medium give intermediate 
range (weak) attraction, and short range repulsion. In 
this short and simple discussion of the possible implica­
tions, we only consider the repulsive component. Fig. 15 
could be viewed upon as the exchange of a meson be­
tween two-nucleons, while it is scattered intermediately 
by a third one. Then, it is natural to describe such an 
effect by a change in the propagator, i.e. by a change 
of the mass. Here, we analyze the effects by taking into 
account the change of the vector-meson masses using the 
form

m v (p) =  m v  e x p ( -a v p )  , (10.3)

where a v  is treated as an adjustable parameter.
On the basis of the SU(3) properties of the ESC model, 

the changes of vector-meson masses in a nuclear medium 
induce the density-dependent effective repulsions in a 
rather universal manner in NN, YN and Y Y  channels. 
Then, our first step is to investigate this effect in usual

FIG. 15: Triple-meson three-body interaction.

nuclear m atter. Since for the scalar exchanges e +  P  we 
expect big cancellations, also in the many-body case, we 
here for simplicity only change the vector-meson masses 
for an analysis of the sensitivity of e.g. the well-depths 
w.r.t. medium effects.

For convenience, our medium-induced effects are han­
dled in comparison with the three-nucleon interaction 
(TNI) introduced by Lagaris-Pandharipande [50], which 
is represented in simple forms of density-dependent two- 
body interactions. Here, we refer their param eter sets 
TNI2 and TNI3, reproducing nuclear incompressibility 
250 MeV and 300 MeV, respectively. Their TNI is com­
posed of the attractive part (TNA) and the repulsive 
part (TNR). Our modeling for the repulsive component 
through the change of vector-meson masses corresponds 
only to their TNR. Hereafter, TNR (TNA) parts of TNI2 
and TNI3 are denoted as TNR2 and TNR3 (TNA2 and 
TNA3), respectively.

In the left panel of Fig. 16, we show the saturation 
curves of symmetric nuclear m atter, namely binding en­
ergy per nucleon as a function of p, which are obtained 
from the G-matrix calculations with ESC04(NN). Here, 
the upper curve denoted as “QTQ” is calculated with the 
QTQ prescription. The lower one denoted as “CIES” is 
obtained with the choice of a continuous intermediate- 
energy spectrum in the G-matrix equation. The CIES 
result is known to simulate well the result including the 
three-hole line contributions [51]. In the following pro­
cedure, however, we use the QTQ result because our G- 
m atrix analyses for hypernuclear systems are based on 
the QTQ prescription in this paper. The box in the fig­
ure show the area where nuclear saturation is expected 
to occur empirically, and the energy minimums of both 
curves of “QTQ” and “CIES” are found to deviate from 
this area. In order to realize the nuclear saturation, 
three-body effects should be added on the contributions 
of ESC04(NN) in the same way as the cases of using the 
other NN  interaction models: Here, we use the above 
mentioned TNI. The dashed curves in the right panel of
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p/po p/p»

FIG. 16: Binding energy per nucleon B/A in symmetric nu­
clear matter as a function of p/po (saturation curve). The box 
represents the area in which saturation occurs empirically. In 
the left panel, the two solid curves show the G-matrix results 
for ESC04(NN) with the QTQ and CIES prescriptions. In 
the right panel, the dashed curves are obtained by adding the 
TNI contributions on the QTQ result, and the solid curves 
are for the medium-corrected versions ESC04*(NN). See the 
text for the detail.

Fig. 16 are obtained by adding the TNI contributions on 
the (QTQ) G-matrix results, where the reduction factor 
0.8 is multiplied on the TNA part so as to give the energy 
minimum at an adequate value of -1 5  ~  -1 6  MeV. The 
two curves in the figure correspond to the cases of adopt­
ing TNI2 and TNI3. Then, the saturation condition is 
found to be satisfied nicely. Hereafter, when we use the 
TNI together with ESC04(NN), the factor 0.8 is always 
multiplied on the TNA part. In addition, the nucleon en­
ergy spectra obtained in the case of adopting TNI2 are 
adopted in the YN G-matrix equations in this work.

Next, we perform the G-matrix calculations with 
ESC04(NN) in which the vector-meson masses are 
changed according to (10.3). Hereafter, the medium- 
corrected versions of ESC04 are denoted as ESC04*(aV) 
including the param eter . In the right side of Fig. 16, 
the two solid curves are obtained by adding the contri­
butions of TNA2 and TNA3 multiplied by 0.8 to the 
G-matrix results. It should be noted here tha t the TNR 
parts are switched off because they are substituted by our 
medium-induced repulsions. Namely, the TNA parts are 
used here as phenomenological substitutes for the three- 
body attractive effects which are out of our present scope. 
The param eter in (10.3) is chosen so as to simulate 
the TNR contributions: The two solid curves in the figure 
are obtained by choosing =  0.07 fm3 and =  0.18 
fm3, which turn  out to be quite similar to the dashed 
curves obtained by adding the TNI2 and TNI3 contribu­

tions, respectively, on the original G-matrix result. Thus, 
it turns out th a t the density dependence of our medium- 
induced repulsion is very similar to th a t of TNR. Al­
though this similarity is of no fundamental meaning, it is 
nicely demonstrated tha t our medium-induced repulsion 
plays the same role as TNR for nuclear saturation.

Let us study the effects of the medium corrections in 
the YN sectors of the ESC models. Then, a prospective 
way is to perform calculations for the values of =  0.07 
fm3 and = 0 .1 8  fm3 which induce repulsions similar 
to TNR2 and TNR3, respectively, in nucleon m atter. In 
the following analysis, we investigate mainly the case of 
a V = 0 .1 8  fm3. In Table XXIII, the calculated values of 
Ua and U£ at normal density and their S-state contri­
butions are shown in the case of taking a V =  0.18 fm3. 
Comparing these values with those in Table XIX and 
Table XXII, we find tha t the repulsive contributions are 
substantial both for Ua and U£ . In the case of Ua, the 
Ua values for ESC04a-d are too attractive in comparison 
with the empirical indication of Ua ~  -3 0  MeV. These 
overbinding values turn  out to be improved substantially 
by our medium-induced repulsion. Especially, the val­
ues for ESC04a/b*(aV) are noted to agree well with the 
above empirical value. Similar repulsive contributions 
are seen also in the case of U£ , though the resulting val­
ues are still negative. However, it is im portant tha t the 
repulsive contribution is large in the ‘3S \ ( I  =  3/2) state, 
as discussed later.

It should be emphasized here th a t the spin-dependent 
features of the AN G-matrix interaction are not really 
affected by our medium-induced repulsion. For instance, 
the values of Uj j (S) become small only by 0.05 MeV 
(ESC04a), 0.09 MeV (ESC04b), 0.10 MeV (ESC04c) and 
0.11 MeV (ESC04d) in the case of taking a V =  0.18 
fm3. In the cases of the P -sta te  contributions such as 
Uj j (P ), ULS( P ) and UT (P ), the changes are negligibly 
small. The change of the effective mass mA is also small: 
The m*A values for ESC04a-d*(a =  0.18) are smaller by 
only 0.01 ~  0.02 than those for ESC04a-d. These facts 
suggest interesting possibilities of using ESC04a-d*(aV) 
in various spectroscopic studies of A hypernuclei, where 
the param eter can be adjusted so as to reproduce 
experimental values of B a with almost no influence on 
spin-dependent structures of A hypernuclei. Then, we 
stress tha t the meaning of the above choice =  0.18 
fm 3 is only for its similarity to TNR3.

Our medium-induced repulsions are related intimately 
to the problem of maximum masses of neutron stars. 
As well known, the repulsive three-body force in high- 
density neutron m atter, embodied in TNR, plays an es­
sential role for a stiffening of the EOS of neutron-star 
m atter, assuring the observed maximum mass of neu­
tron stars. However, the hyperon mixing in neutron­
star m atter brings about the remarkable softening of the 
EOS, which cancels the effect of the repulsive three-body 
force for the maximum mass. In order to avoid this 
serious problem, Nishizaki, Takatsuka and one of the 
authors (Y.Y.) [52, 53] introduced the conjecture that
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TABLE XXIII: Calculated values of Ua and Us at normal density for ESC04a-d* (av =  0.18). Their S-state contributions are 
also given. All entries are in MeV.

1/ 2’3Sl UA 1/ 2’3Si 3/2,3^ Us
ESC04a* - 12.0 -15.8 -30.6 12.2 -26.4 - 11.0 8.6 -27.9
ESC04b* - 11.6 -18.5 -33.0 10.1 -25.5 -9.0 15.2 -19.7
ESC04c* -12.3 -25.1 -39.3 7.9 - 20.0 -10.3 12.7 -23.6
ESC04d* - 12.0 -23.0 -37.2 8.3 -20.3 -9.6 19.1 -16.6

P/P0

FIG. 17: Calculated values of Ua as a function of p/p0. The 
three solid curves are for ESC04b, ESC04b* (av =  0.07) and 
ESC04b*(av =  0.18). The two dashed curves are obtained 
by adding the TNR2 and TNR3 contributions on the result 
for ESC04b. See the text for the detail.

the TNR-type repulsions work universally for YN and 
YY as well as for N N . They showed tha t the role of 
the TNR for stiffening the EOS can be recovered clearly 
by this assumption. Our model of the medium-induced 
repulsion explains their assumption quite naturally. In 
Fig. 17, we draw the values of Ua as a function of p /p 0 

in some cases: The three solid curve are for ESC04b 
and ESC04b*(aV =  0.07) and ESC04b*(aV =  0.18),
and the two dashed curves are obtained by adding the 
TNR2 and TNR3 contributions on the result for ESC04b. 
It is found, here, our medium-induced repulsions for 
a V =  0.07 and a V =  0.18 are very similar to the TNR2 
and TNR3 contributions, respectively, as well as the case

of nuclear saturation curves. Thus, it is clearly demon­
strated tha t our medium-induced repulsions, which works 
universally among octet baryons, will assure the stiffen­
ing of the EOS.

In neutron-star m atter, the chemical equilibrium con­
dition for S -  given by =  p n +  p e- makes S -  mixing 
more favorable than A mixing controlled by pa  =  p n in 
cases of neglecting strong interactions. Then, it is an 
im portant problem whether the well depth of S -  is a t­
tractive or repulsive in neutron m atter. As shown in 
Table XXIII, our medium-induced repulsion for S N  con­
tributes dominantly in the 3Si ( I  =  3/2)-state with the 
largest statistical weight. Thus, this repulsive effect ap­
pears most strongly in the S -  well depth in neutron m at­
ter given by the I  =  3/2 S N  interaction.

In our analysis for hypernuclear systems, we do not 
consider the three-body attraction, such as TNA, which 
plays an im portant role for nuclear saturation as well as 
the three-body repulsion such as TNR and our medium- 
induced effect. The origin of such a part is considered 
to be in meson-exchange three-body correlations, being 
initiated by Fujita-Miyazawa [54]. Possible counterparts 
in our hyperonic m atter will be studied in future.

C. Double-A states

Here, we study the AA (i i So) interactions, for which 
the experimental information can be obtained from the 
data of double-A hypernuclei. In the past, NHC-D [55] 
has been used popularly as a standard meson-theoretical 
model for S =  —2 interactions. The reason was be­
cause this interaction is compatible with strong AA at­
traction (ABaa = 4  ~  5 MeV) supported by earlier data 
on double-A hypernuclei. This strong AA attraction of 
NHC-D is due to its specific feature th a t only the scalar 
singlet meson is taken into account. Since the discov­
ery of NAGARA event identified uniquely as AAHe [56] 
in 2001, the AA interaction is established to be rather 
less attractive (A B aa ~  1 MeV). Then, it is quite impor­
tan t to investigate what values of A B aa are obtained for 
ESC04 models.

Let us here evaluate the values of AB aa (AA He), tak­
ing account of the AA-SN coupling effect explicitly. For 
this purpose, we adopt the three-body model composed
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of the a  +  A +  A and a  +  S +  N  configurations. The ef­
fective AA-AA and AA-SN interactions [57] are derived 
in the G-matrix framework as follows: We solve the AA- 
S N  -S S  coupled-channel G-matrix equation for a AA pair 
in nuclear m atter, and represent the resultant AA-AA 
and AA-SN G-matrices as local potentials in coordinate 
space. These G-matrix interactions depend on the nu­
cleon Fermi momentum kp of nuclear m atter. Then, it 
is a problem what value of kp should be chosen in our 
calculation for AAHe. In similar calculations for AHe, the 
value of kF parameter included in the AN G-matrix in­
teraction was chosen around 1.0 fm- i  [58]. This value of 
kp  ~  1.0 fm- i  agree qualitatively with the value derived 
from the average nuclear density felt by the A particle 
in AHe. Because a sophisticated estimation of the kp 
value is not necessary for our purpose of demonstrating 
features of the interaction models, we choose this plausi­
ble value of kp =  1.0 fm- i  in the present calculations for
6 He aah

Using our AA-AA and AA-SN G-matrix interactions, 
three-body variational calculations are performed in the 
Gaussian basis functions [59], where the S N  -S N  interac­
tion is not taken into account for simplicity. It should be 
noted tha t in our approach high-lying AA-SN -S S  corre­
lations are renormalized into the AA-AA and AA-SN G- 
matrices, and low-lying AA-SN correlations are treated 
in the model space composed of a  +  A +A  and a  +  S +  N  
configurations. In order to avoid the double counting of 
the AA-SN coupling interaction, it is necessary tha t the 
high-lying AA-SN correlations are not included in our 
three-body model space. A practical way for this prob­
lem is to take the two A (S and N) coordinates from 
the center of mass of a  core, not the relative coordinate 
between them explicitly, because the short-range corre­
lations are taken into account unfavorably in this model 
space.

As for the interactions between the a  cluster and va­
lence particles (A, S, N ), we adopt the phenomenologi­
cal potentials: For a-A and a-S  interactions, we use the 
two-range Gaussian potentials given in Ref.[57]. Here, 
the former is fitted so as to reproduce the A binding en­
ergies of AH and AHe. The strength of the latter (named 
as Xa1 [57]) is determined in consideration of the exper­
imental indication tha t the S well depth is roughly half 
of the A one. On the other hand, we use the Kanada- 
Kaneko potential [60] for the a -N  interaction, designed 
so as to reproduce scattering phase shifts. In the a+ S + N  
channel, we take into account the orthogonality condition 
between a  and N.

In Table XXIV we show the calculated values of 
ABaa (AAHe) and S N  admixture probabilities PgN in the 
cases of using ESC04a-d, NSC97f and NHC-D. (In the 
calculation for NHC-D, the hard-core radius in the i i S0 

state is taken as 0.53 fm, and the S S  channel is not taken 
into account.) The effect of the medium-induced repul­
sion is not so remarkable in this case, because the AA G- 
m atrix is calculated at low density (kp =  1.0 fm- i ). For 
instance, the calculated values for ESC04a*(a =  0.18)

TABLE XXIV: A B aa (AAHe) values (in MeV) are calculated 
with G-matrix interactions derived from ESC04a-d, NSC97 
and NHC-D. (The hard-core radius in NHC-D is taken as 
0.53 fm.)

A B aa (MeV) P S N  ( % )

ESC04a 1.36 0.44
ESC04b 1.37 0.45
ESC04c 0.97 1.15
ESC04d 0.98 1.18
NSC97f 0.34 0.19
NHC-D 1.05 0.14

are A B aa= 1.24 MeV and P hN =0.44 %. The calculated 
A B aa values should be compared with the experimental 
value 1.01 ±  0.20-0'ii MeV [56]. Then, the calculated 
values for ESC04a-d are considered to be more or less 
reasonable in the present scope of our simple three-body 
model.

On the other hand, the value of A B aa for NSC97f turns 
out to be rather too small compared with the experimen­
tal value: The AA interaction of NSC97f is concluded to 
be too weak. It is interesting tha t our result for NSC97f 
is quite similar to the Yamada’s result [61], obtained from 
the sophisticated variational calculation with direct use 
of NSC97f. This means th a t our model-space approach 
with G-matrix effective interactions simulates nicely the 
real space approach with free-space interactions. It was 
pointed out by Yamada th a t the AA-SN -S S  coupling 
treatm ent leads to the less AA binding than the AA-SN 
one due to the existence of a pseudo bound state in the 
case of NSC97f. It should be noted tha t such a pseudo 
bound state does not appear in the case of ESC04a-d. In 
[62] the similar result was obtained for NSC97f by the G- 
m atrix calculation. On the other hand, the importance of 
the rearrangement effect of the a-core for A B aa (Aa He) 
has been pointed out by [63, 64, 65]. It is an open prob­
lem to study core-rearrangement effects on the basis of 
the ESC04 models.

The most striking feature of ESC04a-d is the far 
stronger AA-SN coupling than NSC97f and NHC-D. In 
Table XXIV, this feature is seen in larger value of P hN 
in the case of ESC04a-d. In particular, it is very curious 
tha t the AA-SN couplings of ESC04c/d are extremely 
strong. As shown in Ref. [57], such a coupling effect ap­
pears dramatically in AAH and AA He because of the small 
energy differences between ground A-A states and S -a  
states. A comprehensive study on the AA-SN coupling 
is now in progress on the basis of ESC04a-d.
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D. P roperties  of H N G -m atrix

There is no EN  scattering data  at present. We have 
only uncertain information on E-nucleus interactions ex­
perimentally. We consider th a t the most reliable data 
in the present stage was given by the BNL-E885 experi­
ment [66], in which they measured the missing mass spec­
tra  for the 12C (K - ,K + )X  reaction. Reasonable agree­
ment between this data  and theory is realized by assum­
ing a E-nucleus potential Us (p) =  —V0f (r) with well 
depth V  ~  14 MeV within the Wood-Saxon (WS) pre­
scription.

Let us here derive the potential energies Us using the 
G-matrix theory in the same way as the cases of Ua and 
Us. In the past, NHC-D gave rise to attractive values of 
Us , while strongly repulsive values were obtained for the 
other Nijmegen models. Then, it is very curious what 
values of Us are obtained for ESC04a-d.

In the same way as in the S N  case, we solve the EN  
starting channel G-matrix equation in the QTQ prescrip­
tion. Likewise, the E conversion width r s , due to an 
energy-conserving EN  -AA transition, is not calculated 
here. In this case, the channel-coupling treatm ents are 
performed for AA-EN-SS and EN -A S-SS channels.

TABLE XXV: Values of Us at normal density and partial 
wave contributions for ESC04a-d and ESC04d*(a v  =  0.18). 
For comparison, the result for NHC-D is also shown (hard­
core radii are taken as 0.50 fm in all channels.). All entries 
are in MeV.

T 3s 1 3Po 3 Pi 3p 2 Us
ESC04a 0 8.1 - 10.0 1.0 -0.3 -0.4 -0.7

1 -4.5 21.8 -0.7 0.7 - 0.1 0.3 +15.1
ESC04b 0 5.9 -2.4 0.7 0.7 1.0 -0.4

1 0.5 27.9 0.6 0.9 -0.3 1.2 +36.3
ESC04c 0 5.9 -15.7 1.2 - 0.1 - 1.8 - 1.2

1 6.8 1.9 - 0.8 0.1 -0.3 -1.7 -5.5
ESC04d 0 6.4 -19.6 1.1 1.2 -1.3 - 2.0

1 6.4 -5.0 - 1.0 - 0.6 -1.4 - 2.8 -18.7
ESC04d* 0 6.3 -18.4 1.2 1.5 -1.3 -1.9

1 7.2 -1.7 - 0.8 -0.5 - 1.2 -2.5 - 12.1
NHC-D 0 -4.5 2.6 - 1.8 - 0.2 - 0.6 -1.7

1 0.2 5.3 - 2.6 0.0 -2.9 -5.6 -11.9

In Table XXV we show the calculated values of Us at 
normal density and their partial-wave contributions for 
ESC04a-d and ESC04d*(aV =  0.18). For comparison, 
the result for NHC-D is also given, where the hard-core 
radii are taken as 0.50 fm in all channels, and the S S  and 
AS channels are not taken into account. Now, the re­
markable difference among ESC04a-d is revealed: These 
four versions turn  out to give rise to completely different 
values of Us . It should be noted tha t the ESC models 
such as ESC04c/d can bring about attractive E-nucleus

potentials predicting the existence of E hypernuclei. It 
is very interesting tha t ESC04d* including the medium- 
induced repulsion leads to the E well depth similar to the 
above “experimental” value. Though the attractive value 
of Us is obtained also in the case of NHC-D, its partial- 
wave contribution is completely different from those in 
the case of ESC04c/d. In the former case, the attractive 
Us is owing to the strong P -state  attraction. In the lat­
ter case, however, the strong attraction in the 13Si state 
plays an essential role for it. Because of this reason, var­
ious E hypernuclear states will be predicted even in light 
s-shell systems on the basis of ESC04c/d. Level struc­
tures of these E states have to reflect the peculiar spin- 
and isospin dependences of the underlying EN interac­
tions. The detailed analysis will be given in our next 
paper.

XI. DISCUSSION AND CONCLUSIONS

We have shown in this paper tha t the ESC-approach 
to the nuclear force problem is able to make a connection 
between on the one hand the at present available baryon­
baryon data and on the other hand the underlying quark 
structure of the baryons and mesons. Namely, a suc- 
cessfull description of both the NN- and KV-scattering 
data is obtained with meson-baryon coupling parameters 
which are almost all explained by the QPC-model. This 
at the same time in obediance of the strong constraint 
of no bound states in the S  =  -1-system s. Therefore, 
the ESC04 models of this paper are an im portant step in 
the determination of the baryon-baryon interactions for 
low energy scattering and the description of hypernuclei 
in the context of broken SU(3)-symmetry. The values for 
many parameters, which in previous work were consid­
ered to free to large extend, are now limited strongly, and 
tried to be made consistent with the present theoretical 
view on low energy hadron physics. This is in partic­
ularly the case for the F / ( F  +  D)-ratios of the MPE- 
interactions. These ra tio ’s for the vector- and scalar- 
mesons are rather close to the QPC-model predictions. 
This holds also for the values of the coupling constants. 
Here, the introduction of a zero in the form factor is im­
portant, leading to a sizeable reduction in the scalar cou­
plings. It is interesting tha t the features of a-exchange 
with a zero in the form factor are very similar to those 
obtained in a chiral-unitary-approach [67].

The application of the QQ-pair creation to baryon­
meson couplings using a 3S1-model [68] for pseudoscalar 
and vector-meson couplings, and the nucleon-nucleon 
interactions has first been attem pted by Fujiwara and 
Hecht [69]. We did not explore this possibility, but it is 
not unlikely th a t this alternative leads to a similar scheme 
of couplings as the 3P 0-model.

The G-matrix results show tha t basic features of hyper- 
nuclear data are reproduced nicely by ESC04, improving 
some weak points of the soft-core OBE-models NSC89 [3] 
and NSC97 [4]. In spite of this superiority of ESC04 for
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hypernuclear data, perhaps not every aspect of the ef­
fective (two-body) interactions in hypernuclei can be de­
scribed by this model. For example, this could be the case 
for the well depth Us . From the results it is clear that 
a good fit to the scattering data not necessarily means 
success in the G-matrix results. To explain this one can 
think of two reasons: (i) the G-matrix results are sen­
sitive to  the two-body interactions below 1 fm, whereas 
the present YN-scattering data  are not, (ii) other than 
two-body forces play an im portant role. However, since 
the N N  © Y N -fit is so much superior for ESC04- than for 
OBE-models, we are inclined to look for solutions to the 
mentioned problems outside the two-body forces. A nat­
ural possibility is the presence of three-body forces (3BF) 
in hypernuclei which can be viewed as generating effec­
tive two-body forces, which could solve the well-depth 
issues. In the case of the A B aa  also 3BF could be oper­
ating. This calls for an evaluation of the 3BF’s N N N , 
A NN , S N N , AAN, etc. for the soft-core ESC-model, 
consistent with its two-body forces.

The AN p-waves seem to be better, which is the result 
of the truly simultaneous N N  +  YN-fitting. This is also 
reflected in the better KA-value, making the well-known 
small spin-orbit splitting smaller.

Finally, we mention the extensive work on baryon-

baryon using the resonating-group-method (RGM), ex­
ploiting quark-gluon-exchange (QGE) in conjunction 
with OBE, taking full account of the antisymmetriza- 
tion of the six quarks in the two-baryon systems [70]. A 
remarkable difference with the ESC-models is th a t QGE 
leads to strong repulsion in the S N (3S 1, I  =  3/2)- and 
the S N (1S 0, I  =  1/2)-channels. In contrast, in this pa­
per we have assumed tha t QGE is very suppressed dy­
namically.
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