13 research outputs found

    Autologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment.

    Get PDF
    BACKGROUND: Interactions between immune and tumor cells are critical to determining cancer progression and response. In addition, preclinical prediction of immune-related drug efficacy is limited by interspecies differences between human and mouse, as well as inter-person germline and somatic variation. To address these gaps, we developed an autologous system that models the tumor microenvironment (TME) from individual patients with solid tumors. METHOD: With patient-derived bone marrow hematopoietic stem and progenitor cells (HSPCs), we engrafted a patient\u27s hematopoietic system in MISTRG6 mice, followed by transfer of patient-derived xenograft (PDX) tissue, providing a fully genetically matched model to recapitulate the individual\u27s TME. We used this system to prospectively study tumor-immune interactions in patients with solid tumor. RESULTS: Autologous PDX mice generated innate and adaptive immune populations; these cells populated the TME; and tumors from autologously engrafted mice grew larger than tumors from non-engrafted littermate controls. Single-cell transcriptomics revealed a prominent vascular endothelial growth factor A (VEGFA) signature in TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth. CONCLUSIONS: Humanization of the interleukin 6 locus in MISTRG6 mice enhances HSPC engraftment, making it feasible to model tumor-immune interactions in an autologous manner from a bedside bone marrow aspirate. The TME from these autologous tumors display hallmarks of the human TME including innate and adaptive immune activation and provide a platform for preclinical drug testing

    Processed Seurat objects for GeneTrajectory inference (Gene Trajectory Inference for Single-cell Data by Optimal Transport Metrics)

    No full text
    These are processed Seurat objects for the two biological datasets in GeneTrajectory inference (https://github.com/KlugerLab/GeneTrajectory/):Human myeloid dataset analysisMyeloid cells were extracted from a publicly available 10x scRNA-seq dataset (https:// support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc 10k v3). QC was performed using the same workflow in (https://github.com/satijalab/ Integration2019/blob/master/preprocessing scripts/pbmc 10k v3.R). After standard normalization, highly-variable gene selection and scaling using the Seurat R package, we applied PCA and retained the top 30 principal components. Four sub-clusters of myeloid cells were identified based on Louvian clustering with a resolution of 0.3. Wilcoxon rank-sum test was employed to find cluster-specific gene markers for cell type annotation.For gene trajectory inference, we first applied Diffusion Map on the cell PC embedding (using a local-adaptive kernel, each bandwidth is determined by the distance to its k-nearest neighbor, k = 10) to generate a spectral embedding of cells. We constructed a cell-cell kNN (k = 10) graph based on their coordinates of the top 5 non-trivial Diffusion Map eigenvectors. Among the top 2,000 variable genes, genes expressed by 0.5% − 75% of cells were retained for pairwise gene-gene Wasserstein distance computation. The original cell graph was coarse-grained into a graph of size 1,000. We then built a gene-gene graph where the affinity between genes is transformed from the Wasserstein distance using a Gaussian kernel (local-adaptive, k = 5). Diffusion Map was employed to visualize the embedding of gene graph. For trajectory identification, we used a series of time steps (11,21,8) to extract three gene trajectories. Mouse embryo skin data analysisWe separated out dermal cell populations from the newly collected mouse embryo skin samples. Cells from the wildtype and the Wls mutant were pooled for analyses. After standard normalization, highly-variable gene selection and scaling using Seurat, we applied PCA and retained the top 30 principal components. Three dermal celltypes were stratified based on the expression of canonical dermal markers, including Sox2, Dkk1, and Dkk2. For gene trajectory inference, we first applied Diffusion Map on the cell PC embedding (using a local-adaptive kernel bandwidth, k = 10) to generate a spectral embedding of cells. We constructed a cell-cell kNN (k = 10) graph based on their coordinates of the top 10 non-trivial Diffusion Map eigenvectors. Among the top 2,000 variable genes, genes expressed by 1% − 50% of cells were retained for pairwise gene-gene Wasserstein distance computation. The original cell graph was coarse-grained into a graph of size 1,000. We then built a gene-gene graph where the affinity between genes is transformed from the Wasserstein distance using a Gaussian kernel (local-adaptive, k = 5). Diffusion Map was employed to visualize the embedding of gene graph. For trajectory identification, we used a series of time steps (9,16,5) to sequentially extract three gene trajectories. To compare the differences between the wiltype and the Wls mutant, we stratified Wnt-active UD cells into seven stages according to their expression profiles of the genes binned along the DC gene trajectory.</p

    Evaluation of zero counts to better understand the discrepancies between bulk and single-cell RNA-Seq platforms

    No full text
    Recent advances in sample preparation and sequencing technology have made it possible to profile the transcriptomes of individual cells using single-cell RNA sequencing (scRNA-Seq). Compared to bulk RNA-Seq data, single-cell data often contain a higher percentage of zero reads, mainly due to lower sequencing depth per cell, which affects mostly measurements of low-expression genes. However, discrepancies between platforms are observed regardless of expression level. Using four paired datasets with multiple samples each, we investigated technical and biological factors that can contribute to this expression shift. Using two separate machine learning models we found that, in addition to expression level, RNA integrity, gene or UTR3 length, and the number of transcripts potentially also influence the occurrence of zeros. These findings could enable the development of novel analytical methods for cross-platform expression shift correction. We also identified genes and biological pathways in our diverse datasets that consistently showed differences when assessed at the single cell versus bulk level to assist in interpreting analysis across transcriptomic platforms. At the gene level, 25 genes (0.12%) were found in all datasets as discordant, but at the pathway level, 7 pathways (2.02%) showed shared enrichment in discordant genes

    Longitudinal single-cell analysis of a patient receiving adoptive cell therapy reveals potential mechanisms of treatment failure

    No full text
    Abstract Adoptive cell therapy (ACT) using tumor infiltrating lymphocytes (TIL) is being studied in multiple tumor types. However, little is known about clonal cell expansion in vitro and persistence of the ACT product in vivo. We performed single-cell RNA and T-Cell Receptor (TCR) sequencing on serial blood and tumor samples from a patient undergoing ACT, who did not respond. We found that clonal expansion varied during preparation of the ACT product, and only one expanded clone was preserved in the ACT product. The TCR of the preserved clone which persisted and remained activated for five months was previously reported as specific for cytomegalovirus and had upregulation of granzyme family genes and genes associated with effector functions (HLA-DQB1, LAT, HLA-DQA1, and KLRD1). Clones that contracted during TIL preparation had features of exhaustion and apoptosis. At disease progression, all previously detected clonotypes were detected. New clonotypes appearing in blood or tumor at disease progression were enriched for genes associated with cytotoxicity or stemness (FGFBP2, GNLY, GZMH, GZMK, IL7R, SELL and KLF2), and these might be harnessed for alternative cellular therapy or cytokine therapy. In-depth single-cell analyses of serial samples from additional ACT-treated patients is warranted, and viral- versus tumor-specificity should be carefully analyzed

    Multi-Omics Investigation of Innate Navitoclax Resistance in Triple-Negative Breast Cancer Cells

    No full text
    Cancer cells employ various defense mechanisms against drug-induced cell death. Investigating multi-omics landscapes of cancer cells before and after treatment can reveal resistance mechanisms and inform new therapeutic strategies. We assessed the effects of navitoclax, a BCL2 family inhibitor, on the transcriptome, methylome, chromatin structure, and copy number variations of MDA-MB-231 triple-negative breast cancer (TNBC) cells. Cells were sampled before treatment, at 72 h of exposure, and after 10-day drug-free recovery from treatment. We observed transient alterations in the expression of stress response genes that were accompanied by corresponding changes in chromatin accessibility. Most of these changes returned to baseline after the recovery period. We also detected lasting alterations in methylation states and genome structure that suggest permanent changes in cell population composition. Using single-cell analyses, we identified 2350 genes significantly upregulated in navitoclax-resistant cells and derived an 18-gene navitoclax resistance signature. We assessed the navitoclax-response-predictive function of this signature in four additional TNBC cell lines in vitro and in silico in 619 cell lines treated with 251 different drugs. We observed a drug-specific predictive value in both experiments, suggesting that this signature could help guiding clinical biomarker studies involving navitoclax

    An in vivo screen of noncoding loci reveals that Daedalus is a gatekeeper of an Ikaros-dependent checkpoint during haematopoiesis.

    No full text
    Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of th
    corecore