27 research outputs found

    Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS

    Get PDF
    Inflammation plays a central role in the development of asthma, which is considered an allergic disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined to better understand the pathophysiology of this disease. Severe asthmatic patients experience frequent exacerbations, leading to infection, and subsequently show altered levels of inflammation that are unlikely to be due to the Th2 immune response alone. This study estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subsequently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric analysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-kappa B, and Rho kinase 1-and 2-positive cells compared to the non-treated OVA and OVA-LPS groups (p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic avenue, even in exacerbated asthmatic patients, and significantly contributes to the control of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and oxidative stress in a murine experimental asthma model exacerbated by LPS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)National Council of Scientific and the Technological Development (CNPq)Laboratory of Medical InvestigationsUniv Sao Paulo, Sch Med, Dept Med Sci, Sao Paulo, Brazil|Hosp Sirio Libanes, Sao Paulo, BrazilUniv Fed Sao Paulo, Inst Biomed Sci, Dept Biol Sci, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Biol Sci, Sao Paulo, BrazilUniv Fed Sao Paulo, Inst Biomed Sci, Dept Biol Sci, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Biol Sci, Sao Paulo, BrazilFAPESP: 2013/17944-1Laboratory of Medical Investigations: LIM-20 FMUSPWeb of Scienc

    Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation

    Get PDF
    Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. the treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. the lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. in conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ São Paulo, Sch Med, Dept Med, BR-01246903 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biol Sci, São Paulo, BrazilWeb of Scienc

    Cholesterol-Ester Transfer Protein Alters M1 and M2 Macrophage Polarization and Worsens Experimental Elastase-Induced Pulmonary Emphysema

    Get PDF
    Cholesterol-ester transfer protein (CETP) plays a role in atherosclerosis, the inflammatory response to endotoxemia and in experimental and human sepsis. Functional alterations in lipoprotein (LP) metabolism and immune cell populations, including macrophages, occur during sepsis and may be related to comorbidities such as chronic obstructive pulmonary disease (COPD). Macrophages are significantly associated with pulmonary emphysema, and depending on the microenvironment, might exhibit an M1 or M2 phenotype. Macrophages derived from the peritoneum and bone marrow reveal CETP that contributes to its plasma concentration. Here, we evaluated the role of CETP in macrophage polarization and elastase-induced pulmonary emphysema (ELA) in human CETP-expressing transgenic (huCETP) (line 5203, C57BL6/J background) male mice and compared it to their wild type littermates. We showed that bone marrow-derived macrophages from huCETP mice reduce polarization toward the M1 phenotype, but with increased IL-10. Compared to WT, huCETP mice exposed to elastase showed worsened lung function with an increased mean linear intercept (Lm), reflecting airspace enlargement resulting from parenchymal destruction with increased expression of arginase-1 and IL-10, which are M2 markers. The cytokine profile revealed increased IL-6 in plasma and TNF, and IL-10 in bronchoalveolar lavage (BAL), corroborating with the lung immunohistochemistry in the huCETP-ELA group compared to WT-ELA. Elastase treatment in the huCETP group increased VLDL-C and reduced HDL-C. Elastase-induced pulmonary emphysema in huCETP mice promotes lung M2-like phenotype with a deleterious effect in experimental COPD, corroborating the in vitro result in which CETP promoted M2 macrophage polarization. Our results suggest that CETP is associated with inflammatory response and influences the role of macrophages in COPD

    A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    Get PDF
    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor- (TNF-), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Univ Sao Paulo, Sch Med, Dept Clin Med, BR-01246903 Sao Paulo, BrazilHosp Sirio Libanes, Phys Therapy Dept, BR-01308050 Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Biosci, BR-09972270 Diadema, BrazilUniv Fed Sao Paulo, Dept Biochem, BR-09972270 Diadema, BrazilUniv Fed Sao Paulo, Dept Biosci, BR-09972270 Diadema, BrazilUniv Fed Sao Paulo, Dept Biochem, BR-09972270 Diadema, BrazilWeb of Scienc

    Physiotherapy Care of Patients with Coronavirus Disease 2019 (COVID-19) - A Brazilian Experience

    Get PDF
    Some patients with coronavirus disease (COVID-19) present with severe acute respiratory syndrome, which causes multiple organ dysfunction, besides dysfunction of the respiratory system, that requires invasive procedures. On the basis of the opinions of front-line experts and a review of the relevant literature on several topics, we proposed clinical practice recommendations on the following aspects for physiotherapists facing challenges in treating patients and containing virus spread: 1. personal protective equipment, 2. conventional chest physiotherapy, 3. exercise and early mobilization, 4. oxygen therapy, 5. nebulizer treatment, 6. noninvasive ventilation and high-flow nasal oxygen, 7. endotracheal intubation, 8. protective mechanical ventilation, 9. management of mechanical ventilation in severe and refractory cases of hypoxemia, 10. prone positioning, 11. cuff pressure, 12. tube and nasotracheal suction, 13. humidifier use for ventilated patients, 14. methods of weaning ventilated patients and extubation, and 15. equipment and hand hygiene. These recommendations can serve as clinical practice guidelines for physiotherapists. This article details the development of guidelines on these aspects for physiotherapy of patients with COVID-19

    Effects of plant protease inhibitors (Pep-3-EcTI, Pep-BbKI, and Pep-BrTI) versus corticosteroids on inflammation, remodeling, and oxidative stress in an asthma–COPD (ACO) model

    Get PDF
    The peptide derived from E. contortisiliquum trypsin inhibitor (Pep-3-EcTI), peptide derived from kallikrein inhibitor isolated from B. bauhinioides (Pep-BbKI), and B. rufa peptide modified from B. bauhinioides (Pep-BrTI) peptides exhibit anti-inflammatory and antioxidant activities, suggesting their potential for treating asthma–chronic obstructive pulmonary disease (COPD) overlap (ACO). We compared the effects of these peptides with dexamethasone (DX) treatment in an ACO model. In this study, 11 groups of male BALB/c mice were pre-treated under different conditions, including sensitization with intraperitoneal injection and inhalation of ovalbumin (OVA), intratracheal instillation of porcine pancreatic elastase (ELA), sensitization with intraperitoneal injection, and various combinations of peptide treatments with Pep-3-EcTI, Pep-BbKI, Pep-BrTI, dexamethasone, and non-treated controls (SAL-saline). Respiratory system resistance, airway resistance, lung tissue resistance, exhaled nitric oxide, linear mean intercept, immune cell counts in the bronchoalveolar lavage fluid, cytokine expression, extracellular matrix remodeling, and oxidative stress in the airways and alveolar septa were evaluated on day 28. Results showed increased respiratory parameters, inflammatory markers, and tissue remodeling in the ACO group compared to controls. Treatment with the peptides or DX attenuated or reversed these responses, with the peptides showing effectiveness in controlling hyperresponsiveness, inflammation, remodeling, and oxidative stress markers. These peptides demonstrated an efficacy comparable to that of corticosteroids in the ACO model. However, this study highlights the need for further research to assess their safety, mechanisms of action, and potential translation to clinical studies before considering these peptides for human use

    Protective Effects of Anti-IL17 on Acute Lung Injury Induced by LPS in Mice

    Get PDF
    Introduction: T helper 17 (Th17) has been implicated in a variety of inflammatory lung and immune system diseases. However, little is known about the expression and biological role of IL-17 in acute lung injury (ALI). We investigated the mechanisms involved in the effect of anti-IL17 in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice.Methods: Mice were pre-treated with anti-IL17, 1h before saline/LPS intratracheal administration alongside non-treated controls and levels of exhaled nitric oxide (eNO), cytokine expression, extracellular matrix remodeling and oxidative stress, as well as immune cell counts in bronchoalveolar lavage fluid (BALF), and respiratory mechanics were assessed in lung tissue.Results: LPS instillation led to an increase in multiple cytokines, proteases, nuclear factor-κB, and Forkhead box P3 (FOXP3), eNO and regulators of the actomyosin cytoskeleton, the number of CD4+ and iNOS-positive cells as well as the number of neutrophils and macrophages in BALF, resistance and elastance of the respiratory system, ARG-1 gene expression, collagen fibers, and actin and 8-iso-PGF2α volume fractions. Pre-treatment with anti-IL17 led to a significant reduction in the level of all assessed factors.Conclusions: Anti-IL17 can protect the lungs from the inflammatory effects of LPS-induced ALI, primarily mediated by the reduced expression of cytokines and oxidative stress. This suggests that further studies using anti-IL17 in a treatment regime would be highly worthwhile

    Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs.\ud \ud \ud \ud Methods\ud Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies.\ud \ud \ud \ud Results\ud Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001).\ud \ud \ud \ud Conclusions\ud In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.FAPESP and LIM20HCFMUSP.FAPESP and LIM-20-HC-FMUSP

    The Plant-Derived Bauhinia bauhinioides

    Get PDF
    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment

    Treatment with Rho-kinase inhibitor in guinea pigs with chronic allergic inflammation: modulation of eosinophilic inflammation, expression of inflammatory cytokines, extracellular matrix and oxidative stress in lung tissue

    No full text
    INTRODUÇÃO: A relevância do parênquima pulmonar distal na fisiopatologia da asma tem sido intensamente enfatizada. Vários estudos sugerem a inibição da Rho quinase como uma intervenção benéfica e promissora na asma. Entretanto, não há estudos anteriores que avaliaram os efeitos destes inibidores na modulação da mecânica do parênquima pulmonar e suas alterações histopatológicas em um modelo animal de inflamação pulmonar alérgica crônica. OBJETIVO: Avaliar a inibição da Rho quinase (Y-27632) na modulação da responsividade, inflamação, remodelamento da matriz extracelular e ativação do estresse oxidativo no parênquima pulmonar de cobaias com inflamação pulmonar alérgica crônica. MÉTODOS: As cobaias receberam sete inalações de ovalbumina (1-5 mg / ml; grupo OVA) ou salina (grupo SAL) ao longo de quatro semanas. A partir da quinta inalação, os animais do grupo Rho quinase foram submetidos a inalação com Y-27632, 10 minutos antes de cada inalação com OVA ou SAL. Setenta e duas horas após a sétima inalação, os animais foram anestesiados e exanguinados, e das tiras do tecido pulmonar foram realizadas a mecânica oscilatória, sob condições basais e após o desafio de ovalbumina (0,1%). Após a mecânica, as fatias de pulmão foram submetidas a análise histológica por meio da morfometria. RESULTADOS: A inibição de Rho quinase nos animais expostos à ovalbumina atenuou a elastância e a resistência tecidual, o número de eosinófilos, a expressão de IL-2, IL-4, IL-5, IL-13, TIMP-1, MMP-9, TGF-, IFN-g, NF-kB e iNOS e o conteúdo de 8-iso-PGF2, fibras elásticas, fibras colágenas e actina em comparação com o grupo OVA (P<0,05). CONCLUSÃO: A inibição da Rho quinase contribui para o controle da capacidade de responsividade do parênquima pulmonar, da inflamação eosinofílica, das respostas Th1/Th2, ao controle do remodelamento da matriz extracelular em um modelo animal de inflamação pulmonar alérgica crônica. Podendo ser considerada uma futura ferramenta farmacológica para o tratamento de doenças pulmonares crónicas.RATIONALE: Previous studies with Rho-kinase inhibitors suggest a beneficial influence of these drugs in asthma. The relevance of distal lung tissue in functional asthmatic impairment has been intensely emphasized. There have not been any previous studies evaluating the effects of these inhibitors on the modulation of distal lung mechanics and histopathological alterations in an animal model of chronic pulmonary inflammation. OBJECTIVE: To evaluate if Rho-kinase inhibition (Y- 27632) modulates distal lung responsiveness, inflammation, extracellular matrix remodeling and oxidative stress activation in guinea pigs with chronic allergic inflammation. METHODS: Guinea pigs received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) over 4 wk. From the 5th inhalation, the Rho-kinase group animals were submitted to Y-27632 inhalation 10 min before each inhalation with OVA or SAL. Seventy-two hours after the seventh inhalation, the animals were anesthetized and exsanguinated, and oscillatory mechanics of the lung tissue strips were performed under the baseline condition and after the ovalbumin challenge (0.1%). Afterwards, the lung slices were submitted to morphometry. RESULTS: The Rho-kinase inhibition in the ovalbumin-exposed animals attenuated the tissue elastance and resistance, eosinophils, the IL-2, IL-4, IL-5, IL-13, TIMP-1, MMP-9, TGF-, IFN-g, NF-kB, iNOS-positive cells and the 8-iso-PGF2, elastic, collagen and actin content compared with the OVA group (P<0.05). CONCLUSION: Rho-kinase inhibition contributes to the control of distal lung responsiveness and the eosinophilic and Th1/Th2 responses to the control of extracellular matrix remodeling in an animal model of chronic allergic inflammation. It may be considered a future pharmacological tool for the treatment of chronic pulmonary diseases
    corecore