73 research outputs found

    Effects of gut microbiota–derived extracellular vesicles on obesity and diabetes and their potential modulation through diet

    Get PDF
    Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota–derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet–induced increase of the proteobacterium Pseudomonas panacis–derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet–induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota–derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota–derived EV

    Bacterial Taxa Associated with High Adherence to Mediterranean Diet in a Spanish Population

    Get PDF
    The Mediterranean diet (MD) is recognised as one of the healthiest diets worldwide and is associated with the prevention of cardiovascular and metabolic diseases, among others. Dietary habits are considered one of the strongest modulators of the gut microbiota, which seems to play a significant role in the health and disease of the host. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and habitual dietary intake in 360 Spanish adults of the Obekit cohort (normal weight, overweight and obese subjects). Dietary intake and adherence to the MD tests together with faecal samples were collected from each subject. Faecal 16S rRNA sequencing was performed and checked against the dietary habits. MetagenomeSeq was the statistical tool applied to analyse at the species taxonomic level. Results from this study confirm that a strong adherence to the MD increases the population of some beneficial bacteria, improving microbiota status towards a healthier pattern. Bifidobacterium animalis is the species with the strongest association with the MD. One of the highlights is the positive association between several SCFA-producing bacteria and high adherence to the MD. In conclusion, this study shows that MD, fibre, legumes, vegetables, fruit and nuts intakes are associated with an increase in butyrate-producing taxa such as Roseburia faecis, Ruminococcus bromii and Oscillospira (Flavonifractor) plautii

    Interaction among sex, aging, and epigenetic processes concerning visceral fat, insulin resistance, and dyslipidaemia

    Get PDF
    The distribution of adipose tissue is influenced by gender and by age, shifting from subcutaneous to visceral depots with longevity, increasing the development of several aging-related diseases and manifestations such as obesity, metabolic syndrome, and insulin resistance. Epigenetics might have an important role in aging processes. The aim of this research was to investigate the interactions between aging and epigenetic processes and the role of visceral adipose tissue, insulin resistance, and dyslipidaemia. Two different study samples of 366 and 269 adult participants were analyzed. Anthropometric, biochemical (including the triglycerides-glucose (TyG) index), and blood pressure measurements were assessed following standardized methods. Body composition measurements by Dual-energy X-ray absorptiometry (DXA) were also performed for the second sample. Methylation data were assessed by Infinium Human Methylation BeadChip (Illumina) in peripheral white blood cells. Epigenetic age acceleration was calculated using the methods DNAmAge (AgeAcc) and GrimAge (AgeAccGrim). Age acceleration (AgeAccGrim) showed better correlations than AgeAcc with most of the measured variables (waist circumference, glucose, HOMA-IR, HDL-cholesterol, triglycerides, and TyG index) for the first sample. In the second sample, all the previous correlations were confirmed, except for HOMA-IR. In addition, many of the anthropometrical measurements assessed by DXA and C-reactive protein (CRP) were also statistically associated with AgeAccGrim. Associations separated by sex showed statistically significant correlations between AgeAccGrim and HDL-cholesterol or CRP in women, whereas, in men, the association was with visceral adipose tissue mass DXA, triglycerides and TyG index. Linear regression models (model 1 included visceral adipose tissue mass DXA and TyG index and model 2 included HDL-cholesterol and CRP) showed a significant association for men concerning visceral adipose tissue mass DXA and TyG index, while HDL-cholesterol and CRP were associated in women. Moreover, structural equation modeling showed that the TyG index was mediating the majority of the visceral adipose tissue mass action on age acceleration. Collectively, these findings showed that there are different mechanisms affecting epigenetic age acceleration depending on sex. The identified relationships between epigenetic age acceleration and disease markers will contribute to the understanding of the development of age-related diseases

    Interaction between an adcy3 genetic variant and two weight-lowering diets affecting body fatness and body composition outcomes depending on macronutrient distribution: a randomized trial

    Get PDF
    The adenylate cyclase 3 (ADCY3) gene is involved in the regulation of several metabolic processes including the development and function of adipose tissue. The effects of the ADCY3 rs10182181 genetic variant on changes in body composition depending on the macronutrient distribution intake after 16 weeks of the dietary intervention were tested. The ADCY3 genetic variant was genotyped in 147 overweight or obese subjects, who were randomly assigned to one of the two diets varying in macronutrient content: a moderately-high-protein diet and a low-fat diet. Anthropometric and body composition measurements (DEXA scan) were recorded. Significant interactions between the ADCY3 genotype and dietary intervention on changes in weight, waist circumference, and body composition were found after adjustment for covariates. Thus, in the moderately-high-protein diet group, the G allele was associated with a lower decrease of fat mass, trunk and android fat, and a greater decrease in lean mass. Conversely, in the low-fat diet group carrying the G allele was associated with a greater decrease in trunk, android, gynoid, and visceral fat. Subjects carrying the G allele of the rs10182181 polymorphism may benefit more in terms of weight loss and improvement of body composition measurements when undertaking a hypocaloric low-fat diet as compared to a moderately-high-protein diet

    Association of the Gut Microbiota with the Host's Health through an Analysis of Biochemical Markers, Dietary Estimation, and Microbial Composition

    Get PDF
    This research was funded by Centro Tecnológico para el Desarrollo Industrial (CDTI) through the program Consorcio de Investigación Empresarial Nacional (Programa CIEN, BIOFOOD Project) and by CIBERobn (Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CB12/03/30002).This study aims to analyze the relationship between gut microbiota composition and health parameters through specific biochemical markers and food consumption patterns in the Spanish population. This research includes 60 Spanish adults aged 47.3 ± 11.2 years old. Biochemical and anthropometric measurements, and a self-referred dietary survey (food frequency questionnaire), were analyzed and compared with the participant's gut microbiota composition analyzed by 16s rDNA sequencing. Several bacterial strains differed significantly with the biochemical markers analyzed, suggesting an involvement in the participant's metabolic health. Lower levels of Lactobacillaceae and Oscillospiraceae and an increase in Pasteurellaceae, Phascolarctobacterium, and Haemophilus were observed in individuals with higher AST levels. Higher levels of the Christensenellaceae and a decrease in Peptococcaceae were associated with higher levels of HDL-c. High levels of Phascolarctobacterium and Peptococcus and low levels of Butyricicoccus were found in individuals with higher insulin levels. This study also identified associations between bacteria and specific food groups, such as an increase in lactic acid bacteria with the consumption of fermented dairy products or an increase in Verrucomicrobiaceae with the consumption of olive oil. In conclusion, this study reinforces the idea that specific food groups can favorably modulate gut microbiota composition and have an impact on host's health

    Possible metabolic interplay between quality of life and fecal microbiota in a presenior population: Preliminary results

    Get PDF
    Objectives: The number of people aged 60 y is increasing worldwide, so establishing a relationship between lifestyle and health-associated factors, such as gut microbiota in an older population, is important. This study aimed to characterize the gut microbiota of a presenior population, and analyze the association between some bacteria and quality of life with the Short Form (SF) 36 questionnaire. Methods: Participants were adult men and women ages 50 to 80 y (n = 74). In addition to the SF-36 question- naire, fecal samples were collected in cryotubes, and 16S RNA gene sequencing was performed to character- ize microbial features. Participants were classified into two groups according to SF-36 punctuation. Linear and logistic regression models were performed to assess the possible association between any bacterial bowl and SF-36 score. Receiver operating characteristics curves were fitted to define the relative diagnostic strength of different bacterial taxa for the correct determination of quality of life. Results: A positive relationship was established between SF-36 score and Actinobacteria (P = 0.0310; R = 0.2510) compared with Peptostreptococcaceae (P = 0.0259; R = 0.2589), which increased with decreasing quality of life. Logistic regressions models and receiver operating characteristics curves showed that the rela- tive abundance of Actinobacteria and Peptostreptococcaceae may be useful to predict quality of life in a prese- nior population (area under the curve: 0.71). Conclusions: Quality of life may be associated with the relative abundance of certain bacteria, especially Acti- nobacteria and Peptostreptococcaceae, which may have a specific effect on certain markers and health care, which is important to improve quality of life in older populations

    Association of the SH2B1 rs7359397 gene polymorphism with steatosis severity in subjects with obesity and non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. Some genetic variants might be involved in the progression of this disease. The study hypothesized that individuals with the rs7359397 T allele have a higher risk of developing severe stages of NAFLD compared with non-carriers where dietary intake according to genotypes could have a key role on the pathogenesis of the disease. SH2B1 genetic variant was genotyped in 110 overweight/obese subjects with NAFLD. Imaging techniques, lipidomic analysis and blood liver biomarkers were performed. Body composition, general biochemical and dietary variables were also determined. The SH2B1 risk genotype was associated with higher HOMA-IR p equal 0.001; and Fatty Liver Index (FLI) p equal 0.032. Higher protein consumption (p equal 0.028), less mono-unsaturated fatty acid and fiber intake (p equal 0.045 and p equal 0.049, respectively), was also referred to in risk allele genotype. Lipidomic analysis showed that T allele carriers presented a higher frequency of non-alcoholic steatohepatitis (NASH) (69.1/100 vs. 44.4/100; p equal 0.006). In the genotype risk group, adjusted logistic regression models indicated a higher risk of developing an advanced stage of NAFLD measured by FLI (OR 2.91) and ultrasonography (OR 4.15). Multinomial logistic regression models showed that risk allele carriers had higher liver fat accumulation risk (RRR 3.93) and an increased risk of NASH (RRR 7.88). Consequently, subjects carrying the T allele were associated with a higher risk of developing a severe stage of NAFLD. These results support the importance of considering genetic predisposition in combination with a healthy dietary pattern in the personalized evaluation and management of NAFLD

    Cardiotrophin-1 promotes a high survival rate in rabbits with lethal fulminant hepatitis of viral origin

    Get PDF
    Rabbit hemorrhagic disease virus (RHDV) causes lethal fulminant hepatitis closely resembling acute liver failure (ALF) in humans. In this study, we investigated whether cardiotrophin-1 (CT-1), a cytokine with hepatoprotective properties, could attenuate liver damage and prolong survival in virus-induced ALF. Twenty-four rabbits were infected with 2 × 10(4) hemagglutination units of RHDV. Twelve received five doses of CT-1 (100 μg/kg) starting at 12 h postinfection (hpi) (the first three doses every 6 h and then two additional doses at 48 and 72 hpi), while the rest received saline. The animals were analyzed for survival, serum biochemistry, and viral load. Another cohort (n = 22) was infected and treated similarly, but animals were sacrificed at 30 and 36 hpi to analyze liver histology, viral load, and the expression of factors implicated in liver damage and repair. All infected rabbits that received saline died by 60 hpi, while 67% of the CT-1-treated animals survived until the end of the study. Treated animals showed improved liver function and histology, while the viral loads were similar. In the livers of CT-1-treated rabbits we observed reduction of oxidative stress, diminished PARP1/2 and JNK activation, and decreased inflammatory reaction, as reflected by reduced expression of tumor necrosis factor alpha, interleukin-1β, Toll-like receptor 4, VCAM-1, and MMP-9. In addition, CT-1-treated rabbits exhibited marked upregulation of TIMP-1 and increased expression of cytoprotective and proregenerative growth factors, including platelet-derived growth factor B, epidermal growth factor, platelet-derived growth factor receptor β, and c-Met. In conclusion, in a lethal form of acute viral hepatitis, CT-1 increases animal survival by attenuating inflammation and activating cytoprotective mechanisms, thus representing a promising therapy for ALF of viral origin
    corecore