5 research outputs found

    The LiNiO2_2 Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part I. Structural Chemistry

    Get PDF
    Following the demand for increased energy density of lithium-ion batteries, the Ni content of the Nickel-Cobalt-Manganese oxide (NCM) cathode materials has been increased into the direction of LiNiO2_2 (LNO), which regained the attention of both industry and academia. To understand the correlations between physicochemical parameters and electrochemical performance of LNO, a calcination study was performed with variation of precursor secondary particle size, maximum calcination temperature and Li stoichiometry. The structural properties of the materials were analyzed by means of powder X-ray diffraction, magnetization measurements and half-cell voltage profiles. All three techniques yield good agreement concerning the quantification of Ni excess in the Li layer (1.6%–3.7%). This study reveals that the number of Li equivalents per Ni is the determining factor concerning the final stoichiometry rather than the calcination temperature within the used calcination parameter space. Contrary to widespread belief, the Ni excess shows no correlation to the 1st^{st} cycle capacity loss, which indicates that a formerly overlooked physical property of LNO, namely primary particle morphology, has to be considered

    The LiNiO2_{2} Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties Part II. Morphology

    Get PDF
    A better understanding of the cathode active material (CAM) plays a crucial role in the improvement of lithium-ion batteries. We have previously reported the structural properties of the model cathode material LiNiO2_{2} (LNO) in dependence of its calcination conditions and found that the deviation from the ideal stoichiometry in LiNiO2 (Ni excess) shows no correlation to the 1st cycle capacity loss. Rather, the morphology of LNO appears to be decisive. As CAM secondary agglomerates fracture during battery operation, the surface area in contact with the electrolyte changes during cycle life. Thus, particle morphology and especially the primary particle size become critical and are analyzed in detail in this report for LNO, using an automated SEM image segmentation method. It is shown that the accessible surface area of the pristine CAM powder measured by physisorption is close to the secondary particle geometric surface area. The interface area between CAM and electrolyte is measured by an in situ capacitance method and approaches a value proportional to the estimated primary particle surface area determined by SEM image analysis after just a few cycles. This interface area is identified to be the governing factor determining the 1st cycle capacity loss and long-term cycling behavior
    corecore