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ABSTRACT: Driven by demand for greater energy densities, Ni-
rich cathode materials, such as lithium nickel cobalt manganese
(NCM) and nickel cobalt aluminum (NCA) oxides, with
compositions approaching the lithium nickel oxide (LiNiO2) end-
member have been investigated intensively. While such composi-
tions are targeted assuming the redox activity of nickel will lead to
higher capacities, the role of even small amounts of Mn and Co in
these systems is of great importance. To raise considerations about
the role of Mn and Co, operando X-ray diffraction has been used to
resolve the structure−electrochemistry relationships in a series of
Ni-rich NMX (LiNi1−yMnyO2, y = 0.25, 0.17, 0.10, 0.05) cathode
materials. To ensure a meaningful comparison, the upper cutoff
potential was varied as a function of the Mn content in the material
to ensure comparable states of delithiation and thereby provide a capacity-normalized comparison of the structural evolution. During
the first cycle all materials deliver a specific charge capacity exceeding 230 mAh g−1, corresponding to a residual Li content of x(Li)
≈ 0.15, and exhibit a structural evolution free of any first-order phase transitions. Monitoring the structural parameters of the
materials during cycling shows that Mn substitution substantially reduces the magnitude of expansion/contraction of lattice
parameters even when comparable amounts of Li are removed from the structure and more significantly also reduces the anisotropy
of the volume changes. Thus, these Co-free, Ni-rich materials hold promise as high-capacity cathodes with good structural and
mechanical stability.

■ INTRODUCTION
The rapid transition toward practical and accessible electro-
mobility has been driven by improvements in lithium-ion
batteries (LIBs). These devices enable high energy and power
densities with respect to both volume and weight compared to
other secondary energy storage systems. For high energy
density applications, the cathode material is most commonly
based on a layered transition-metal oxide, such as
LiNiaCobMncO2 (NCM) or LiNiaCobAlcO2 (NCA) (a + b +
c = 1).1−3 The combination of transition metals to produce Ni-
rich layered oxides has brought significant advancements to the
energy density and structural stability achievable in this class of
materials.4,5 It is generally concluded that a higher Ni content
improves energy density due to its high electrochemical redox
activity; Co is beneficial to rate capability and is important
during synthesis to form a well-ordered layered structure, while
Mn improves structural stability and raises the average voltage
without partaking in the electrochemical redox reaction. To
improve specific capacity, the nickel content has progressively

increased in these materials. Meanwhile, issues with the
sourcing of cobalt, due to its toxicity and scarcity, have also
driven the development of Co-free cathode materials.6−8

Additionally, several recent studies have questioned the
necessity of cobalt in Ni-rich cathode materials for applications
requiring high energy density, and comparable performance
and structural stability can be achieved using other substituent
elements.9−12 In the O3-type layered structure, depicted in the
inset of Figure 1, Li ions occupy the 3a octahedral interstitial
sites of the oxygen sublattice, consisting of a cubic close-
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packed (ccp) array of oxygen ions (6c sites), while TM cations
are situated alternatingly in the 3b sites.13

The ternary cathode phases LiCoO2 (LCO) and LiNiO2
(LNO) have each been studied extensively and present their
own favorable properties and also drawbacks.14−17 The small
ionic radius of Li (0.76 Å) prevents many elements (0.5−0.7
Å) from readily crystallizing into layered LiMO2 structures
(R3m space group) when prepared via solid-state synthesis,
with the exception of the LiCoO2, LiNiO2, and LiVO2
phases.18−20 In contrast, LiMnO2 generally crystallizes with
an orthorhombic structure (Pmmm).21 The family of Mn-
based spinel materials has also been investigated thoroughly;
however, the comparatively low practical specific capacity
(≈120 mAh g−1, compared to >200 mAh g−1 for layered
materials) has prevented its wider adoption.22,23 LiMnO2 with
a layered structure had also been reported and was obtained
via ion exchange from the sodium analogue (NaMnO2).

24−26

However, several studies revealed a transition to the spinel
structure after successive (de)intercalations.27,28 While LiCoO2
initially enabled the commercialization of the contemporary
LIB (graphite || LiCoO2),

29 complete utilization of the Li
content available in the cathode could not be realized due to
oxygen release at high levels of delithiation. This can be
explained by considering the electronic structure of the
material, where the Co3+/Co4+ redox couple overlaps with
the band of the O2−:2p (see Figure 1), explaining the oxygen
activity at high potential in this material. The overlap of the
Ni3+/Ni4+ redox couple in LiNiO2 is much less pronounced,
and the Mn3+/Mn4+ band expected in LiMnO2 is situated
significantly higher than the O2−:2p band, enabling high
oxidation states to be achieved without the loss of lattice
oxygen.19 Thus, LiNiO2 can be cycled to higher potentials
without encountering oxygen redox (≈230 mAh g−1 at 4.3
V).30 However, in practice modern LiCoO2 cells are typically
operated up to a lower cutoff voltage to avoid fast capacity
fading caused by excessive mechanical degradation (≈165
mAh g−1 at 4.35 V).31 As discussed above, the observed
electrochemical behavior and associated phase transitions in
ternary layered oxide phases can be related to the changing

electronic configuration of the active transition-metal ions
during delithiation.32−34 Hence, the introduction of substituent
atoms to produce more complex quaternary (e.g., Li−Ni−
Mn−O) or quintenary (e.g., Li−Ni−Mn−Co−O) phases
should also be expected to influence the electronic
configuration of adjacent metal ions and thereby influence
the potential at which a given cation redox couple is
active.35−37 The preparation of solid solutions of these ternary
layered oxides allows for the redox activity and advantageous
physical properties of the basic ternary phases to be harnessed
in a homogeneous phase, as shown in Figure 1. The
composition of the resulting solid solutions is also con-
sequential for the potential at which each TM redox couple is
active. In a pure ternary layered oxide composition, all TM
sites experience the same electric crystal field, and the
covalency of the TM−O bond in each octahedron is also
identical. However, in a solid solution, substitution at the TM
site influences the interaction of neighboring cations with their
surrounding oxygen octahedra. Thus, subtle differences in the
redox behavior are observed in quaternary and higher phases
compared to the ternary phases.
Studying the dynamic behavior of cathode materials during

charge and discharge has been achieved via a variety of
advanced in situ or operando characterization techniques,
ranging from X-ray or neutron scattering, tomography, and
spectroscopy to microscopy via electrons, light, or scanning
probe and other physical techniques such as monitoring
pressure or gas evolution.38−44 Among these, the use of X-ray
diffraction (XRD) to investigate the structural evolution of the
active materials in real time (operando) has been widely
adopted, largely because of the greater accessibility of
synchrotron sources and ease of construction of proper
windowed coin cells for researchers.45,46 Simultaneous
advancements in the resolution and intensity of lab X-ray
sources now also allow for such studies to be undertaken at
researcher’s home institutions.47

This study examines the structure−electrochemistry rela-
tionships in a series of Ni-rich NMX (LiNi1−yMnyO2, y = 0.25,
0.17, 0.10, 0.05) cathode materials with comparison to
LiNi0.9Co0.1O2. To ensure the observed structural evolution
is comparable between the different materials, the applied
upper cutoff potentials have been varied to control the degree
of delithiation. Operando XRD confirms the absence of any
first-order phase transitions in all of the materials investigated
when the different materials are subjected to commensurate
levels of Li utilization (x(Li) ≈ 0.15, qch > 230 mAh g−1).

■ EXPERIMENTAL SECTION
Material Synthesis. A series of Ni-rich cathode materials

were synthesized from coprecipitated hydroxide precursors of
the appropriate stoichiometry: Ni1−yMny(OH)2 (y = 0.25, 0.17,
0.10, 0.05) and Ni0.9Co0.1(OH)2 (BASF SE); LiOH·H2O
(BASF SE) was used as the lithium source, with a
stoichiometric lithium excess n(TM):n(Li) = 1:1.01. The
hydroxide precursors were mixed using a laboratory blender
(Kinematica AG) to ensure homogeneity and transferred to an
alumina crucible. The precursor mixtures were heated under
O2 flow to desired annealing temperatures ranging from 700 to
900 °C with a ramp rate of 3 °C min−1 and held for 6 h.
Electrode Preparation. Electrodes for electrochemical

characterization were prepared by mixing the cathode active
material (CAM) powders with conductive carbon (C65,
Imerys Graphite & Carbon) and PVDF binder (Solef 5130,

Figure 1. Phase diagram of the LiNiO2−LiMnO2−LiCoO2 system.
Blue dots highlight the materials studied here. Left inset: illustration
of the O3-type layered structure. I and S represent the interlayer
thickness (interslab) and TM layer thickness (slab), respectively.
Right inset: schematic depicting the redox energies of Ni, Mn, and Co
species relative to the O2−:2p band.



Solvay GmbH) in a 94:3:3 mass ratio using a centrifugal
planetary mixer (ARE 250, Thinky Corporation). The solid
content of the final slurries was 61 wt %. The slurries were cast
onto an Al-foil (thickness 20 μm, Nippon Light Metal Co.,
Ltd.) using a box-type coater (wet-film thickness 100 μm,
width 6 cm, Erichsen GmbH & Co. KG) and an automated
coating Table (5 mm s−1, Coatmaster 510, Erichsen GmbH &
Co. KG). The coated tapes were placed in a vacuum oven
(VDL 23, Binder GmbH) and heated to 120 °C under vacuum
for drying overnight. The dried cathode tapes were compressed
using a calender (CA5, Sumet Systems GmbH) at a set line
force of 30 N mm−1.
Cell Assembly. CR2032 coin cells were assembled in an

Ar-filled glovebox using a GF/D-type glass microfiber
separator (Whatman), a 0.6 mm thick Li foil anode
(Albemarle, Germany), and 95 μL of LP57 electrolyte (1 M
LiPF6 in 3:7 wt % ethylene carbonate:ethyl methyl carbonate,
BASF SE). The positive caps, negative caps, and spacers of the
coin cell casings were modified by electro-erosion for operando
XRD experiments to have a central hole of diameter 5 mm and
sealed with X-ray transparent glass windows of diameter 6 mm
and thickness 160 μm using a surface-treated polyethylene
foil.48

Operando XRD. All cells were cycled at a specific current of
19 mA g−1 (≈ C/10) using a Gamry Interface 1000
potentiostat. The degree of delithiation, x(Li), achieved during
cycling was estimated based upon the measured charge (q
[mAh]), the mass of the active material in the electrode (m
[g]), and the theoretical capacity of each cathode material (qth
[mAh g−1]), assuming a fully lithiated stoichiometry in the
pristine electrode materials (i.e., initial value of x(Li) = 1) for
the first charge cycle. XRD patterns were collected
simultaneously using a STOE Stadi-P diffractometer with Mo
anode. Diffraction data were collected in the range 5° < 2θ <
37° with a collection time of 10 min per pattern. The zero
offset and instrumental contribution to peak broadening were
determined by measurement of a LaB6 660b standard reference
material.49 Rietveld refinement was performed sequentially on
the diffraction data using GSAS-II.50 The use of a Mo anode
(λMoKα = 0.70926 Å) allows for a range of d-spacings (d ≈
1.07−7.30 Å) to be measured, allowing the first 19 reflections
from the cathode materials to be resolved. A compromise was
achieved between intensity and time resolution by collecting
patterns over a relatively small angular range (5° < 2θ < 37°).
This corresponds to ≈120 diffraction patterns per charge−
discharge cycle or a Δx(Li) of ≈0.013 per pattern. All of the
materials studied here are isostructural with α-NaFeO2 and
thus were modeled using a layered structure with space group
R3m. The site occupancies of the TM site (3b) in the structure
were fixed to reflect the composition of the different cathode
materials. Because of the poor sensitivity of XRD toward
lithium, the site occupancy factor of the Li site (3a) was not
refined during the sequential refinements. Similarly, the atomic
displacement parameters (ADPs) of each site were fixed to
established reasonable values previously determined in
structural studies of transition-metal-based cathode materials.51

Subtle differences in the relative intensity of reflections from
the Al foil and Li foil counter electrode were observed between
the different coin cells presented in this study due to the effects
of preferred orientation, and so these phases were fitted using
Pawley refinements using cubic structures with space group
Fm3m.52 The cell parameters of the Li and Al phases were
fixed to known values enabling the sample displacement of the

coin cell stage to be accounted for. Size and strain broadening
contributions of the layered phase, sample displacement
parameters, and the background profile function were refined
for the first pattern of each experiment and then fixed. A
Chebyshev polynomial function with 23 terms was ascribed to
the background profile. Parameters allowed to vary during the
sequential refinement include the scale factor of each phase,
the cell parameters, and the atomic coordinate of oxygen (zOx)
in the electrochemically active layered phase. During sequential
refinements the quality of fit Rwp was generally found to vary
within ±3% during cycling (see Figure S1). An example of the
quality of fit to the first pattern of each operando cycling
experiment and the corresponding structural parameters are
shown in Figure S2 and Table S1, respectively.

■ RESULTS AND DISCUSSION
To compare the consequences of Co or Mn substitution for
structural evolution in Ni-rich materials, Figure 2 shows the

evolution of diffraction data collected from coin cells
containing cathode materials with identical Ni content, i.e.,
NiCo9010 (LiNi0.9Co0.1O2) and NiMn9010 (LiNi0.9Mn0.1O2),
during the first charge−discharge cycle. Here, the Co-
containing sample was cycled to an upper cutoff potential of
4.3 V, delivering a specific capacity of 232.5 mAh g−1, while the
Mn-containing sample was cycled to 4.5 V and delivered a
virtually similar specific capacity of 237.6 mAh g−1. The chosen
cutoff potentials enable the two materials to reach a
comparable lithium content of x(Li) ≈ 0.15 and 0.14,
respectively.
Figure 3 shows the evolution of selected reflections of the

NiMn9010 and NiCo9010 phases during the first cycle. The
figure highlights the absence of any unfavorable phase
transitions with 10% Ni substitution in the cathode regardless
of whether this is realized with Co or Mn, in contrast to the
purely ternary phases such as LiNiO2 or LiCoO2, when

Figure 2. Contour maps of diffraction data collected during the first
cycle of (a) NiCo9010 and (b) NiMn9010. Contour maps of
diffraction data collected during the first cycle of all materials are
shown in Figure S3.



subjected to comparable degrees of delithiation.53−55 For
example, a complex series of first-order phase transitions have
been identified and well characterized during the delithiation
of LiNiO2.

56 Two-phase transitions have also been observed in
Ni-rich NCA materials, for example, a distinct H2−H3 phase
transition in LiNi0.95Co0.04Al0.01O2,

57 while an investigation of a
series of quaternary Ni-rich materials (LiNi0.95M0.05O2, with M
= Al, Mn, Mg, and Co) showed that only Co substitution failed

to suppress the phase transitions.9 The 101 reflection
correlates more with the change in the slab distance, S,
which is depicted in Figure 1. This reflection is observed to
initially behave in an opposite fashion to the others and shifts
to higher angles, corresponding to the reduction in ionic radii
of the TM sites as they are oxidized during delithiation.
Meanwhile, the 003, 006, and 104 reflections originate from
the alternating planes of Li and TM atoms in the layered
structure, and thus their behavior can be related to expansion/
contraction along the stacking axis. For example, during the
delithiation of NiMn9010 (see Figure 3a), the 003 reflection is
first observed to shift slowly to lower angles, corresponding to
an expansion of the interlayer spacing of the cathode material
structure. However, once the cell reaches 4.0 V, it then begins
to rapidly shift to higher angles, corresponding to a significant
decrease in the c lattice parameter as the material reaches high
degrees of delithiation (x(Li) < 0.3). The initial expansion is
attributed to increasing electrostatic repulsion between the
transition-metal octahedra as lithium is removed from the
structure. Lithium extraction from the structure occurs
concurrently with TM oxidation, resulting in the transfer of
negative charge from the octahedral oxygen atoms. Spectro-
scopic studies of Ni-rich cathodes have further confirmed the
charge transfer from oxygen to highly oxidized Ni in the
structure.58 As a result, despite less screening between the
repelling oxygen octahedra after lithium extraction, the
reduced electron density at the oxygen positions allows for
the contraction of the Li interslab distance as there is less
repulsion between the opposite octahedra. This behavior leads
to the observed structural collapse at deep states of charge59

and is also common to various layered cathode materials.60−67

Previous studies of NCM, in particular, have shown that the
collapse is directly correlated to the degree of delithiation and
not the chemical composition of the cathode material.68,69

Upon discharge or during relithiation of the cathode (Figure
3b), the evolution of the reflections proceeds in the opposite
fashion. Closer observation of the peak profiles of reflections at
the beginning of discharge (Figure 3b) shows there is some
broadening at high states of charge, particularly as the Li
content progresses from 0.138 < x(Li) < 0.25. This may be

Figure 3. Stacked diffraction patterns highlighting selected angular
regions collected during the (a) first charge cycle and (b) first
discharge cycle of the cell containing NiMn9010.

Figure 4. Refined unit cell parameters of the (a) NiMn9010 and (b) NiCo9010 materials during the first cycle.



related to phase segregation within the cathode material into
Li-rich and Li-poor phases at high states of delithiation and at
high current densities as a result of different Li diffusivity
between the two phases.70−72 This behavior has been
previously observed in various Ni-rich materials with Ni
content as low as y = 0.6 and thus could be expected to occur
in all of the materials presented here.73

To compare and quantify the evolution of reflections
observed in the diffraction data, Figure 4 shows the refined
unit cell parameters of the NiMn9010 and NiCo9010 materials
during the initial cycle, with identical axes used on both graphs.
The quantitative evolution of lattice parameters was
determined using sequential Rietveld refinements. It should
be noted that several constraints were applied in the
refinements as deemed appropriate for the sample environ-
ment and quality of the diffraction patterns. Further details can
be found in the Experimental Section. When cycled to 4.5 and
4.3 V, respectively, it is evident that both materials undergo a
very similar change in overall cell volume. The Co material,
meanwhile, exhibits a much larger expansion and contraction
along the c-axis compared to the Mn-containing material.
Table 1 shows the range of cell parameters observed for each
material during the first cycle. During the first cycle, the c
lattice parameter of the NiMn9010 materials increases from
the initial value of ≈14.11 to ≈14.25 Å at 4.0 V, before
reducing to ≈13.71 Å as the cell reached the charged state at
4.5 V. In comparison, the c parameter of NiCo9010 begins at
≈14.07 Å and reaches a maximum value of ≈14.39 Å (at 3.98
V), before reducing to a minimum value of ≈13.7 Å at 4.3 V.
This corresponds to a total c parameter variation ([cmax −
cmin]/cOCV) of ≈3.8% for NiMn9010 compared to ≈5.1% for
NiCo9010. Meanwhile, in both materials the a lattice
parameter undergoes a rather comparable continuous reduc-
tion as the electrode is delithiated. As lithium is removed, the
transition-metal ions in the structure are oxidized to species
with smaller ionic radii, e.g., Ni2+ (0.69 Å) → Ni3+ (0.56 Å) →
Ni4+ (0.48 Å) or Co3+ (0.545 Å) → Co4+ (0.53 Å).74 Thus, a
decrease in the distance between adjacent transition-metal
atoms in the structure, and therefore the a lattice parameter, is
expected during delithiation.
Figure 5 shows the potential profiles and differential capacity

curves recorded during the first cycle of the NiMn9010 and
NiCo9010 materials. Considering first the potential profiles
(Figure 5a), it is evident that the substitution of Mn for Co
raises the average working voltage of the materials (≈3.82 V vs
≈3.93 V), indicated by a clear shift to higher potential on both
charge and discharge, which should prove beneficial for energy
density. Comparing the differential capacity curves (see Figure
5b), NiMn9010 exhibits a single peak at 3.7 V during charge,
which corresponds to the Ni redox reaction, as Mn remains
electrochemically inactive and retains a 4+ oxidation state
throughout the measured potential window.75,76 Meanwhile,
the NiCo9010 curve shows additional features in this region,

corresponding to the overlapping redox activities of Ni and Co,
with a peak already at 3.6 V.77,78 At higher potential, both
materials show a peak that is usually attributed to the H2−H3
transition in LNO/LCO materials, which occurs at ≈4.17 V for
NiCo9010 but is observed at higher potentials ≈4.23 V for
NiMn9010. Even though a first-order phase transition is not
observed by XRD, its signature remains in the differential
capacity curve. The shift in the potential at which the Ni redox
features are observed can be attributed to the relative
electronegativity of Ni/Mn or Ni/Co in these systems. Ni,
Co, and Mn have tabulated electronegativities of χNi = 1.91,
χCo = 1.88, and χMn = 1.55, respectively.79 Thus, the
introduction of Co only weakly perturbates the neighboring
Ni−O bonds. Conversely, introducing less electronegative Mn
into the TM layer, whose bonding with the oxygen in
surrounding octahedra is more ionic in nature than the
neighboring Ni, leads to electrons that are localized closer to
the oxygen p orbitals. This raises the potential required to
induce the redox activity of Ni in the Ni−Mn system. This
phenomenon has been described in analogy to the well-known
“inductive effect” in polyanionic systems.35,37 The interaction

Table 1. Refined Cell Parameters of NiMn9010 and NiCo9010 Observed at Various States of Charge during the First Charge−
Discharge Cycle

V/Å3 a/Å c/Å

NiMn9010 NiCo9010 NiMn9010 NiCo9010 NiMn9010 NiCo9010

initial 99.928(7) 99.067(5) 2.8596(2) 2.8512(1) 14.1109(8) 14.0716(5)
max 14.2523(16) 14.3936(7)
charged 92.952(11) 92.237(6) 2.7975(3) 2.7882(2) 13.7149(17) 13.7007(7)
discharged 99.710(9) 98.722(5) 2.8529(2) 2.8412(1) 14.1457(10) 14.1213(6)

Figure 5. (a) Potential profiles recorded during the first cycle of
NiMn9010 and NiCo9010 and (b) corresponding differential capacity
curves.



of the completely occupied oxygen p orbitals with the partially
filled d bands of the transition metals results in the formation
of bonding and antibonding levels and, in particular, an
increase in the energy of the eg* orbitals relative to the t2g
orbitals. The stronger the covalency of the TM−O bond, the
greater the increase in energy of the antibonding orbitals. In
Ni-rich cathode materials, where the Ni is involved in the
redox reaction (Ni2+ ↔ Ni3+ ↔ Ni4+), this will involve the
exchange of electrons within these levels. Thus, if a different
ion is substituted into an adjacent TM site in the structure, this
will influence covalency of the Ni−O bonds in the TM
octahedra and thereby also influence the potential at which the
redox of Ni takes place.
Having established that the materials with 10 mol % Ni

substitution both exhibit single-phase solid solution behavior
when subjected to comparable degrees of delithiation, the
effect of varying the Mn content among the materials was also
investigated. Several LiNi1−yMnyO2 materials (y = 0.05−0.25)
were cycled to varying upper cutoff potentials, and their
observed potential profiles during the first cycle are shown in
Figure 6a,b. Table 2 lists the observed capacities, lithium
contents, and change in cell volume observed during the same
cycle. As the Ni content in the active material is reduced, a
higher upper cutoff potential is necessary to achieve a
comparable capacity between the samples. This can be
attributed to the fact that as the amount of Ni in the electrode
is reduced, greater potentials are required to access the higher
oxidation states of Ni (Ni2+ → Ni3+ → Ni4+) and achieve
comparable capacities. Interestingly, the required cutoff
potential to achieve comparable Li utilization scales approx-
imately linearly with the Ni content in the electrode (see
Figure S4). As discussed earlier, the incorporation of Mn in the
structure also promotes the reduction of Ni3+ during synthesis
of the CAMs, making more Ni2+ available for redox during
delithiation, which is why comparable capacities can still be
attained despite the higher amount of electrochemically
inactive Mn4+.80 This is reflected in the differential capacity
curves of these materials (Figure 6c), where the characteristic
redox features of each material are observed to shift to higher
potentials with increasing Mn content on both charge and
discharge, as expected from the earlier discussion.
Figure 7 shows the relative change of the cathode materials’

a and c parameters during the first cycle, and absolute values
are plotted in Figure S5. All of the materials studied here
remain single phase throughout the entire cycle, including the
NiMn9505 material. This shows that a small amount of Mn
substitution is sufficient to suppress the first-order phase
transitions typically observed during delithiation of LiNiO2.

56

Comparing the evolution of lattice parameters as a function of
potential (see Figure 7a,b), it is evident that there is negligible
change in the cell parameters until 3.6 V for NiCo9010 and
until 3.7 V for the Mn-containing materials. This is consistent
with the first redox features observed in the dq/dV curves of
these materials, discussed earlier and shown in Figures 5b and
6c. Meanwhile, monitoring the evolution of the a parameter as
a function of lithium content (Figure 7c), it can be seen that it
decreases roughly linearly from x(Li) ≈ 1 to 0.3 in all of the
materials, which can be attributed to a decrease in the distance
between adjacent transition-metal atoms in the structure as
they are oxidized to species with smaller ionic radii. The overall
change in a parameter (Δa/a) varies between ≈−2.01% and
−2.15% for the Mn-containing materials (see Figure 8a). In
contrast, the c lattice parameter initially increases as lithium is

removed from the structure. The removal of lithium exposes
the layers of negatively charged oxygen octahedra to one
another, and thus electrostatic repulsion causes the initial
expansion. From Figure 7b,d, it is evident that the relative
change in c parameter clearly varies as a function of the
materials’ compositions. Interestingly, the NiCo9010 material
shows a much larger initial increase in c parameter (≈2.3%)
compared to the LiNi1−yMnyO2 materials (≈1.0−1.3%).
Among the latter materials, the overall change in c parameter
grows larger with decreasing Mn content, from Δc/c ≈ −2.12%
in NiMn7525 to ≈ −3.83% in NiMn9505 (see Figure 8a). This
decrease occurs despite comparable degrees of delithiation
being achieved by the different materials, highlighting the role
of Mn in mitigating the magnitude of structural change. This

Figure 6. Potential profiles recorded during the first cycle of the
LiNi1−yMnyO2 materials as a function of (a) specific capacity and (b)
Li content. (c) Corresponding differential capacity curves.



figure also highlights that the anisotropy of the relative change
in a and c parameters increases considerably as the Mn content
in the cathode material is reduced. In fact, the relative changes
in a and c parameters of NiMn7525 (Δa/a ≈ −2.05% and Δc/
c ≈ −2.12%) are quite similar, suggesting that the higher Mn
content may also help to mitigate anisotropic volume variation
among primary particles in the cathode material, thereby
potentially preventing mechanical degradation of the electrode
during cycling caused by cracking.81,82 The anisotropy is
visualized in Figure 8c by defining an “anisotropy index”
calculated from the difference between the relative change in
the a and c parameters. It is evident that all materials
experience an anisotropic expansion during the initial
delithiation (1 > x(Li) ≥ 0.4); however, the lattice collapse
is clearly much more pronounced for the Ni-rich materials

once the material is further delithiated. Considering the
relative change in cell volume upon delithiation, shown in
Figure 8b, a similar trend can be seen again where the absolute
change reduces considerably with higher Mn content.
Figure 9a,b shows the evolution of the cathode materials’ cell

volume during the first cycle. As mentioned, the change in cell
volume is attributed largely to the change in c parameter with
increasing Ni content. Considering the evolution of cell
volume as a function of potential, the materials initially
undergo a sharp drop in volume at 3.7 V, before slowing and
undergoing another sharp drop in volume after 4.2 V, in
accordance with the “H1−M” and “H2−H3” redox features
observed in the differential capacity curves presented earlier.
However, considering the cell volume as a function of the
materials state of delithiation, it can be seen that the cell

Table 2. Measured Specific Capacities, Corresponding Lithium Content, and Change in Cell Volume of the LiNi1−yMnyO2 and
LiNi0.9Co0.1O2 Materials Observed during the First Cycle

q/mAh g−1 remaining x(Li)

sample 1st charge 1st discharge 1st charge 1st discharge Coulombic efficiency/% Δcell vol/Å3 Δcell vol/%

NiMn7525 230.72 194.13 0.1676 0.8680 84.1 −6.119(10) −6.09
NiMn8317 230.80 191.49 0.1647 0.8577 83.0 −6.356(16) −6.36
NiMn9010 237.60 200.71 0.1378 0.8661 84.5 −6.975(13) −6.98
NiMn9505 234.63 198.51 0.1469 0.8687 84.6 −7.847(22) −7.86
NiCo9010 232.79 196.53 0.1518 0.8679 84.4 −6.830(8) −6.89

Figure 7. Relative changes in lattice parameters of the LiNi1−yMnyO2 and LiNi0.9Co0.1O2 materials observed during the first charge (delithiation) as
a function of (a, b) potential and (c, d) Li content.



volume initially decreases slowly due to the opposing
contraction along the a-axis and expansion along the c-axis.

This behavior continues until the Li content reaches x(Li) ≈
0.3, beyond which a more pronounced reduction in cell
volume begins.
The evolution of the atomic coordinate of oxygen (zOx),

shown in Figure 10a, allows for the interlayer thickness (I) and
TM layer thickness (S) of the cathode materials’ structures to
be calculated (Figure 10b,c). The evolution of this parameter is
similar in all materials except NiMn7525, which shows a
deviation once the Li content in the material reaches a value
<0.3. I, which corresponds to the thickness of the Li slab,
evolves in roughly the same fashion for all materials, and a
gradual increase in the thickness is observed during
delithiation, which can be attributed to the increasing repulsion
between the opposing oxygen octahedra as Li is removed from
the structure, until a collapse as the lithium content reduces
below x(Li) ≈ 0.3, as discussed earlier. This preservation of the
Li interslab distance is essential to the cyclability of layered
positive electrodes, as it enables lithium diffusion pathways to
be preserved and thus enables lithium to be reintercalated into
the structure upon discharge.59 S decreases gradually in all
materials which reflects the reduction in ionic radii of the TMs
upon oxidation during delithiation.

Figure 8. Relative change in (a) a and c lattice parameters and (b) in
unit cell volume of the LiNi1−yMnyO2 and LiNi0.9Co0.1O2 materials as
a function of Ni content during the first charge (delithiation). (c)
Evolution of the lattice anisotropy as a function of Li content in the
electrode during the first charge (delithiation). Inset shows the
maximum lattice anisotropy observed as a function of Ni content in
the electrode.

Figure 9. Refined cell volumes of the LiNi1−yMnyO2 and
LiNi0.9Co0.1O2 materials as a function of (a) potential and (b) Li
content during the first charge (delithiation). Inset figures show the
relative change in cell volume (ΔV/V/%).



The structural evolution of the materials was also
investigated during the second cycle, and observed electro-
chemical data and associated changes in cell volume are
summarized in Table 3. The evolution of the structural
parameters and recorded electrochemistry data can be found in
the Supporting Information (see Figures S6 and S7). At the
end of the first cycle, all materials return to a lithium content of
x(Li) ≈ 0.86 (after discharge), suggesting the irreversible
capacity loss on the first cycle is rather independent of the
cathode material composition, and it is often more related to
morphological and kinetic aspects.83 Similarly to the first cycle,
the materials are delithiated to a lithium content of x(Li) ≈
0.15−0.16 when cycled to the previously defined upper cutoff
potentials, and similar trends in the change of cell parameters
and volume are observed in this cycle as well. During this cycle,
all materials exhibit a comparable Δa/a of ≈−1.8−1.9%, while
the relative change in c parameter is found to vary from Δc/c ≈
−2.3% for NiMn7525 to −2.67% for NiMn9505.

■ OUTLOOK
The results presented above clearly demonstrate that by
adjusting operating conditions to achieve comparable Li
utilization, a representative comparison of the relationship

between cathode material composition and structural evolution
upon cycling can be made. Increasing the Mn content in Ni-
rich, Co-free cathodes leads to improved structural stability
while still providing comparable energy densities. In particular,
the increased presence of electrochemically inert Mn also
significantly reduces the magnitude of anisotropic volume
expansion as the materials are delithiated. Such behavior could
prove especially useful for application in solid-state batteries,
where volume changes can cause contact loss between the
active material and rigid solid electrolyte. However, it is
important to consider that the choice of composition may have
other implications for the materials’ physical properties. Cobalt
is highly beneficial for achieving good electronic conductivity
in layered cathode materials, which is essential for achieving
high rate capability, which is quickly becoming a practical
necessity for applications requiring high power densities, such
as electric vehicles.84 The activation energy for Li diffusion is
also lowest in LCO, while substitution with Ni or Mn increases
the energy barrier to overcome.85 This hindrance to
conductivity is further exacerbated when Co-free materials
are operated at lower temperatures.86 Cobalt has also been
associated with reduced cationic disorder in layered cathode
materials, where mixing of Ni ions into the Li layer is expected
to further hinder diffusion and lead to poor rate capability.87

However, the migration of small amounts of Ni to the Li layer
(1−3%) has recently been shown not to correlate with a
reduction in capacity or irreversible capacity loss on the first
cycle,83 which may favor Mn-based Ni-rich materials. Another
consideration for the choice of cathode material composition is
the synthesis conditions, as Ni-rich materials are highly
sensitive to synthesis temperature and also exhibit poor
stability in uncontrolled atmospheres,88 leading to the
formation of residual lithium impurities at the surface of the
materials, which adversely affects their electrochemical
behavior.89−91 Higher Ni contents require that the synthesis
of the materials is performed in an oxygen atmosphere, as this
promotes the oxidation of Ni2+ to Ni3+ and encourages lithium
uptake.92 Meanwhile, the substitution of Ni with other
elements generally raises the temperature required for
synthesis of the materials.93−95 Thus, considerations about
processing costs and physical properties must be made when
promoting the performance of Ni-rich materials, as higher
synthesis temperatures increase energy use, while conditions
requiring controlled oxygen atmospheres and low humidity can
also influence the scalability and cost of preparing these
materials as well as their electrochemical behavior.
Although it was not observed here, it should also be

considered that raising the operating voltage beyond 4.5 V, as
required for the Mn-rich materials to achieve comparable

Figure 10. (a) Refined z coordinate of oxygen, (b) calculated layer
thickness (S), and (c) calculated interlayer spacing (I) of the
LiNi1−yMnyO2 and LiNi0.9Co0.1O2 materials as a function of Li
content during the first charge (delithiation). The Li site was defined
as the origin (0, 0, 0) in the structural models refined against the
diffraction data.

Table 3. Measured Specific Capacities, Corresponding Lithium Content, and Change in Cell Volume of the LiNi1−yMnyO2 and
LiNi0.9Co0.1O2 Materials Observed during the Second Cyclea

q/mAh g−1 remaining x(Li)

sample 2nd charge 2nd discharge 2nd charge 2nd discharge Coulombic efficiency/% Δcell vol/Å3 Δcell vol/%

NiMn7525 194.12 191.55 0.1678 0.8587 98.7 −5.688(11) −5.68
NiMn8317 195.06 198.64 0.1518 0.8707 101.9 −6.241(13) −6.26
NiMn9010 203.14 205.06 0.1291 0.8731 101.2 −6.797(17) −6.82
NiMn9505 193.22 186.69 0.1662 0.8561 96.6 −6.405(26) −6.41
NiCo9010 196.18 192.96 0.1531 0.8449 98.3 −6.570(7) −6.66

aThe lithium content and change in cell volume calculated for the second cycle were estimated using the final value after the first discharge as a
starting point.



energy densities, may cause electrolyte decomposition.96,97

The dissolution of TM ions was initially identified as an issue
in the high-voltage operation of Mn-based spinels98,99 but has
since been shown to also occur in layered cathode
materials.100,101 This leads to accelerated decomposition of
the electrolyte and growth of the insulating cathode electrolyte
interphase (CEI)102 or poisoning of the graphite SEI in full
cells,103 reducing the amount of available active material and
leading to gradual capacity decay. Improvements to the
structural stability and practical energy density of cathode
materials should therefore not be considered in isolation, and
further research will be required to optimize the entire LIB
system to take advantage of these newly developed Ni-rich
and/or Co-free cathode materials.

■ CONCLUSIONS
In this study the structural evolution in a series of Ni-rich, Co-
free NMX (LiNi1−yMnyO2) cathode materials has been
investigated by operando XRD. We demonstrate that the
anisotropic volume variation diminishes significantly as the Mn
content in the cathode material is increased. This reduction
was achieved while ensuring all materials were subjected to
comparable levels of delithiation, corroborating previous
reports that the lattice collapse during delithiation is
independent of the cathode composition and rather dependent
on the amount of Li extraction. In addition, all materials
investigated were found to exhibit largely single-phase solid
solution behavior when cycled to a lithium content of x(Li) ≈
0.15. The anisotropy of the volume variation was observed to
be significantly more pronounced with increasing Ni content.
The structure−electrochemistry relationships observed during
the delithiation of the materials presented in this study show
that targeting Ni-rich materials with a higher Mn content, at
the expense of Co, could be a promising path toward new
cathode compositions with stable structural evolution and high
capacity, while the substitution of Ni and Co with Mn would
also reduce the cost of raw materials required. However, as
discussed above, the complete elimination of Co may not be
feasible for all applications as Co brings other beneficial
material properties such as electronic conductivity over a wide
range, particularly important for LIBs destined for electro-
mobility applications.86 Thus, Co-free NMX compositions may
instead be more practical in lower cost applications where the
cathode material does not limit the power density of the
system. NMX materials could also hold promise for use in
conjunction with solid electrolytes (SEs) because of the lower
anisotropic volume changes, which may be beneficial to the
chemomechanics of the system.104 The use of novel halide SEs,
which are stable over a wide electrochemical potential
window,105 could enable NMX-based systems with higher
energy density and stable cycling by enabling operation at high
voltage to achieve high Li utilization while avoiding chemical
decomposition of the electrolyte, while the stable structural
evolution helps to maintain contact between the CAM and SE.
The data presented in this study highlight that these novel
NMX cathodes can provide the energy densities expected of
Ni-rich materials, while maintaining good mechanical stability
achieved through reduced anisotropic volume variation,
provided that considerations of full cell cycling stability are
properly addressed.
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