220 research outputs found

    Laser induced densification of cerium gadolinium oxide: application to single-chamber solid oxide fuel cells

    No full text
    International audienceIn single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce0.9Gd0.1O1.95 (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface

    A novel approach of a fully inkjet printed SnO<sub>2</sub>-based gas sensor on a flexible foil

    Get PDF
    International audienceIn recent years, printed and flexible gas sensors have quickly emerged as an innovative area of great interest because of their lightness and low cost. These flexible sensors can be easily integrated into autonomous systems for many applications such as smart food packaging and premature disease detection. In this paper, a novel approach was applied to manufacture a fully inkjet-printed gas sensor on a flexible polymeric foil. Platinum heater and gold electrodes were printed on the top side of the substrate, separated by a thin insulating layer of printed polyimide. An aqueous sol-gel process was adopted to synthesize nanosized SnO2-based sol that guaranty a crystallization at 350 °C, which is entirely consistent with the polyimide foil. Then, the sol was transformed into a stable ink and inkjet printed over the gold electrodes. The printability of different inks was optimized to ensure flawless ejection of droplets, and the complex physico-chemical interactions between the inks and different interfaces were controlled to get well-defined patterns with high resolution. Finally, electrical measurements of the printed sensor were performed to characterize the response and the sensitivity to different concentrations of ethanol, ammonia and carbon monoxide gases, at working temperature of 300 °C, in dry and wet air

    Development of a sensitive and selective mixed-potential ammonia sensor for automotive exhausts

    Get PDF
    Session: A5 Oxide Based Sensors and ActuatorsInternational audienceOne of the most effective technologies in decreasing large-scale NOx emission produced by diesel engine vehicles is Urea-SCR (selective catalytic reduction) system. In order to prevent inducing excessive ammonia to the environment, an NH3 sensor is required at the exit of this system. In this study, highly selective ammonia sensors were developed to detect ammonia emissions from automotive exhaust.The sensors were fabricated with 8-YSZ electrolyte, a platinum reference electrode and a working electrode of Au-V2O5 (mass ratio: 85:15), screen-printed on an alumina supports. A platinum resistor was printed at the backside of the support to control the sensor temperature. The measured sensor response (ΔV) is the potential difference between reference and working electrodes. Figure 1 shows the responses of two identical sensors to 100 ppm CO, NO2, NO and 20 ppm of NH3 at four different temperatures. It can be seen that the sensors respond to all gases at lower temperatures while by increasing temperature to 600 °C the selectivity to NH3 is greatly improved. The selectivity of sensors was also confirmed by testing other possible interfering gases and no responses were observed for 20ppm of H2 and 100ppm of a hydrocarbon mixture. The stability of such sensors was studied at 550 °C and 600 °C. Since sensors showed no long term stability at 600 °C (electrode degradation), but remain stable results at 550 °C, investigations were made to decrease the selective working temperature while maintaining selectivity. After testing different mass percentages of V2O5 in working electrode, we observed that by increasing this value to 50%, the working temperature of selective ammonia sensors could be decreased to 550 °C with stable responses. Further investigations will be performed in order to gain deeper insight in sensing mechanism of V2O5 based working electrodes, which governs the sensor’s performance

    Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    Get PDF
    International audienceThis project deals with the development and the electrochemical characterization of anode supported single chamber SOFC in a simulated environment of thermal engine exhaust gas. In the present work, a gas mixture representative of exhaust conditions is selected. It is composed of hydrocarbons (HC: propane and propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water. Only oxygen content is varied leading to different gas mixtures characterized by three ratios R = HC/O2. Concerning the cell components, a cermet made of nickel and an electrolyte material, Ce0.9Gd0.1O1.95 (CGO) is used as anode and two cathode materials, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and Pr2NiO4+δ (PNO), are evaluated. The prepared cells are investigated in the various gas mixtures for temperatures ranging from 450 °C to 600 °C. Ni-CGO/CGO/LSCF-CGO cell has delivered a maximum power density of 15 mW cm−2 at 500 °C with R = HC/O2 = 0.21, while lower power densities are obtained for the other ratios, R = 0.44 and R = 0.67. Afterwards, LSCF and PNO cathode materials are compared and LSCF is found to deliver the highest power densities. Finally, by improving the electrolyte microstructure, some cells presenting a maximum power density of 25 mW cm−2 at 550 °C are produced. Moreover, up to 17% of initial HC are eliminated in the gas mixture

    Tunable architecture for flexible and highly conductive graphene-polymer composites

    Get PDF
    International audiencePrinted electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 - neither clogging nor flocculation, 2 - spontaneous film formation around room temperature, 3 - high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1 vol%) was obtained and the electrical conductivity reached 217 S m−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup

    Functionalization of APTES modified tin dioxide gas sensor

    Get PDF
    Communication présentée dans la session "Metal Oxide Gas Sensor".International audienceSummary In the present work, commercial SnO2 powder was used for sensor thick film fabrication. The film was produced using screen printing technology. The SnO2 functionalization was done with 3-aminopropyltriethoxysilane (APTES) in liquid phase as an intermediate step, followed by functionalization using hexanoyl chloride exhibiting an alkyl end functional (CH3) group. The SnO2 sensor modified with alkyl end group was found to be sensitive to ammonia gas at 100°C. The advantages are the reduction of the power consumption by decreasing the operating temperature, and the enhancement of the selectivity and sensitivity to the gas with respect to pure SnO2 sensor.MotivationMolecularly modified metal oxide gas sensors have shown to be promising devices for selective gas sensor related to disease diagnosis. Those sensors can be used to detect the gas emanated from the human body for breath analysis application. Tin dioxide sensors have lack of selectivity and work at high temperature (350-500°C). The need of selective sensors with high sensitivity at low gases concentration pushes us to modify SnO2 sensing element in order to change its interactions with gas. The modification with organic functional groups with different polarities change the sensor response to specific gases depending on their polarity. A SnO2 functionalization based on APTES combined with hexanoyl chloride was investigated. Another objective is to reduce the power consumption by decreasing the operating temperature

    SOFC long term operation in pure methane by gradual internal reforming

    Get PDF
    International audienceA solid oxide fuel cell was designed to be operated in pure methane, without reforming or carrier gas. The fuel cell was built up from conventional NiO-YSZ anode supported cell with a specific Pt screen-printed anodic collecting system and a Ir-CGO catalytic layer. The operation principle is based on Gradual Internal Reforming. After an initiation in H2 for 30 minutes, the cell was operated for almost 2000 hours in pure and dry CH4 with a fuel utilization rate of 30 %. Intrinsic gradual degradation of 15 %/1000 h was observed, but no coking occurred at the anodic side

    Langevin Navier-Stokes simulation of protoplasmic streaming by 2D MAC method

    Full text link
    We study protoplasmic streaming in plant cells such as chara brauni by simplifying the flow field to a two-dimensional Couette flow with Brownian random motion inside parallel plates. Protoplasmic streaming is receiving a lot of attention in many areas, such as agriculture-technology and biotechnology. The plant size depends on the velocity of streaming and the driving force originating in molecular motors. Therefore, it is interesting to study detailed information on the velocity of streaming. Recently, experimentally observed peaks in the velocity distribution have been simulated by a 2D Langevin Navier-Stokes (LNS) equation for vortex and flow function. However, to simulate actual 3D flows, we have to use the NS equation for velocity, which, in the case of 2D flows, is not always equivalent to that for vorticity and stream function. In this paper, we report that a 2D LNS equation for velocity and pressure successfully simulates protoplasmic streaming by comparing the results with the experimental data and those obtained by 2D LNS simulations for vortex and flow function. Moreover, a dimensional analysis clarifies the dependence of numerical results on the strength DD of Brownian random force and physical parameters such as kinematic viscosity and cell size. We find from this analysis how the peak position in normalized velocity distribution moves depending on these parameters.Comment: 24 pages, 9 figure

    Tsallis entropy approach to radiotherapy treatments

    Full text link
    The biological effect of one single radiation dose on a living tissue has been described by several radiobiological models. However, the fractionated radiotherapy requires to account for a new magnitude: time. In this paper we explore the biological consequences posed by the mathematical prolongation of a model to fractionated treatment. Nonextensive composition rules are introduced to obtain the survival fraction and equivalent physical dose in terms of a time dependent factor describing the tissue trend towards recovering its radioresistance (a kind of repair coefficient). Interesting (known and new) behaviors are described regarding the effectiveness of the treatment which is shown to be fundamentally bound to this factor. The continuous limit, applicable to brachytherapy, is also analyzed in the framework of nonextensive calculus. Also here a coefficient arises that rules the time behavior. All the results are discussed in terms of the clinical evidence and their major implications are highlighted.Comment: 6 figures, accepted for publication to Physica
    corecore