1,144 research outputs found

    Constraints on holographic dark energy models using the differential ages of passively evolving galaxies

    Full text link
    Using the absolute ages of passively evolving galaxies observed at different redshifts, one can obtain the differential ages, the derivative of redshift zz with respect to the cosmic time tt (i.e. dz/dt{\rm d} z/{\rm d}t). Thus, the Hubble parameter H(z)H(z) can be measured through the relation H(z)=−(dz/dt)/(1+z)H(z)=-({\rm d} z/{\rm d}t)/(1+z). By comparing the measured Hubble parameter at different redshifts with the theoretical one containing free cosmological parameters, one can constrain current cosmological models. In this paper, we use this method to present the constraint on a spatially flat Friedman-Robert-Walker Universe with a matter component and a holographic dark energy component, in which the parameter cc plays a significant role in this dark energy model. Firstly we consider three fixed values of cc=0.6, 1.0 and 1.4 in the fitting of data. If we set cc free, the best fitting values are c=0.26c=0.26, Ωm0=0.16\Omega_{\rm m0}=0.16, h=0.9998h=0.9998. It is shown that the holographic dark energy behaves like a quintom-type at the 1σ1\sigma level. This result is consistent with some other independent cosmological constrains, which imply that c<1.0c<1.0 is favored. We also test the results derived from the differential ages using another independent method based on the lookback time to galaxy clusters and the age of the universe. It shows that our results are reliable.Comment: 18 pages including 7 figures and 1 tables. Final version for publication in Modern Physics Letters A (MPLA)[minor revision to match the appear version

    Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae

    Full text link
    The property of dark energy and the physical reason for acceleration of the present universe are two of the most difficult problems in modern cosmology. The dark energy contributes about two-thirds of the critical density of the present universe from the observations of type-Ia supernova (SNe Ia) and anisotropy of cosmic microwave background (CMB).The SN Ia observations also suggest that the universe expanded from a deceleration to an acceleration phase at some redshift, implying the existence of a nearly uniform component of dark energy with negative pressure. We use the ``gold'' sample containing 157 SNe Ia and two recent well-measured additions, SNe Ia 1994ae and 1998aq to explore the properties of dark energy and the transition redshift. For a flat universe with the cosmological constant, we measure ΩM=0.28−0.05+0.04\Omega_{M}=0.28_{-0.05}^{+0.04}, which is consistent with Riess et al. The transition redshift is zT=0.60−0.08+0.06z_{T}=0.60_{-0.08}^{+0.06}. We also discuss several dark energy models that define the w(z)w(z) of the parameterized equation of state of dark energy including one parameter and two parameters (w(z)w(z) being the ratio of the pressure to energy density). Our calculations show that the accurately calculated transition redshift varies from zT=0.29−0.06+0.07z_{T}=0.29_{-0.06}^{+0.07} to zT=0.60−0.08+0.06z_{T}=0.60_{-0.08}^{+0.06} across these models. We also calculate the minimum redshift zcz_{c} at which the current observations need the universe to accelerate.Comment: 16 pages, 5 figures, 1 tabl

    The Case for an Accelerating Universe from Supernovae

    Get PDF
    The unexpected faintness of high-redshift Type Ia supernovae (SNe Ia), as measured by two teams, has been interpreted as evidence that the expansion of the Universe is accelerating. We review the current challenges to this interpretation and seek to answer whether the cosmological implications are compelling. We discuss future observations of SNe Ia which could offer extraordinary evidence to test acceleration.Comment: To appear as an Invited Review for PASP 20 pages, 13 figure

    Yang-Mills condensate dark energy coupled with matter and radiation

    Get PDF
    The coincidence problem is studied for the dark energy model of effective Yang-Mills condensate in a flat expanding universe during the matter-dominated stage. The YMC energy ρy(t)\rho_y(t) is taken to represent the dark energy, which is coupled either with the matter, or with both the matter and the radiation components. The effective YM Lagrangian is completely determined by quantum field theory up to 1-loop order. It is found that under very generic initial conditions and for a variety of forms of coupling, the existence of the scaling solution during the early stages and the subsequent exit from the scaling regime are inevitable. The transition to the accelerating stage always occurs around a redshift z≃(0.3∌0.5)z\simeq (0.3\sim 0.5). Moreover, when the Yang-Mills condensate transfers energy into matter or into both matter and radiation, the equation of state wyw_y of the Yang-Mills condensate can cross over -1 around z∌2z\sim 2, and takes on a current value ≃−1.1\simeq -1.1. This is consistent with the recent preliminary observations on supernovae Ia. Therefore, the coincidence problem can be naturally solved in the effective YMC dark energy models.Comment: 24 pages, 18 figure

    Detection of a redshift 3.04 filament

    Get PDF
    The filamentary structure of the early universe has until now only been seen in numerical simulations. Despite this lack of direct observational evidence, the prediction of early filamentary structure formation in a Cold Dark Matter dominated universe has become a paradigm for our understanding of galaxy assembly at high redshifts. Clearly observational confirmation is required. Lyman Break galaxies are too rare to be used as tracers of filaments and we argue that to map out filaments in the high z universe, one will need to identify classes of objects fainter than those currently accessible via the Lyman Break technique. Objects selected via their Ly-alpha emission, and/or as DLA absorbers, populate the faintest accessible part of the high redshift galaxy luminosity function, and as such make up good candidates for objects which will map out high redshift filaments. Here we present the first direct detection of a filament (at z=3.04) mapped by those classes of objects. The observations are the deepest yet to have been done in Ly-alpha imaging at high redshift, and they reveal a single string of proto-galaxies spanning about 5 Mpc (20 Mpc comoving). Expanding the cosmological test proposed by Alcock & Paczynski (1979), we outline how observations of this type can be used to determine Omega_Lambda at z=3.Comment: 5 pages, LaTeX, 3 PostScript figures; Accepted for publication in A&A-Letter

    No realistic wormholes from ghost-free scalar-tensor phantom dark energy

    Get PDF
    It is proved that no wormholes can be formed in viable scalar-tensor models of dark energy admitting its phantom-like (w<−1w < -1) behaviour in cosmology, even in the presence of electric or magnetic fields, if the non-minimal coupling function f(Ω)f(\Phi) is everywhere positive and the scalar field Ω\Phi itself is not a ghost. Some special static, spherically symmetric wormhole solutions may exist if f(Ω)f(\Phi) is allowed to reach zero or to become negative, so that the effective gravitational constant becomes negative in some region making the graviton a ghost. If ff remains non-negative, such solutions require severe fine tuning and a very peculiar kind of model. If f<0f < 0 is allowed, it is argued (and confirmed by previous investigations) that such solutions are generically unstable under non-static perturbations, the instability appearing right near transition surfaces to negative ff.Comment: 8 pages, late

    Parametrization of dark energy equation of state Revisited

    Full text link
    A comparative study of various parametrizations of the dark energy equation of state is made. Astrophysical constraints from LSS, CMB and BBN are laid down to test the physical viability and cosmological compatibility of these parametrizations. A critical evaluation of the 4-index parametrizations reveals that Hannestad-M\"{o}rtsell as well as Lee parametrizations are simple and transparent in probing the evolution of the dark energy during the expansion history of the universe and they satisfy the LSS, CMB and BBN constraints on the dark energy density parameter for the best fit values.Comment: 11 page

    Blood group determinates incidence for pancreatic cancer in Germany

    Get PDF
    Background: Genetic risk factors for sporadic pancreatic cancer are largely unknown but actually under high exposure. Findings of correlations between the AB0 blood group system (Chromosome 9q34,1-q34,2) and the risk of pancreatic cancer (PC) in patients from Asia, America and south Europe have already been published. So far it is unclear, whether this correlation between blood group an PC incidence can be found in German patients as well. Methods: One hundred and sixty-six patients who underwent a resection of PC were evaluated in a period between 2000 and 2010. Blood group reference distribution for the German population is given as: 0: 41%; A: 43%; B: 11%; AB: 5%; Rhesus positive: 85%; Rhesus negative: 15%. Analyses were done using the non-parametric Chi(2)-test (p-value two sided; SPSS 19.0). Results: Median age was 62 (34-82) years. Gender: female 73/44%; male: 93/56%. Observed blood group proportions: 0: 43 (25.9%)/A: 94 (56.6%)/B: 16 (9.6%)/AB: 13 (7.8%)/Rhesus positive: 131 (78.9%)/negative: 35 (21.1%). We detected a significant difference to the German reference distribution of the AB0 system (Chi(2) 19.34, df 3, p < 0.001). Rhesus factor has no impact on AB0-distribution (Chi(2) 4.13, df 3, p = 0.25), but differs significantly from reference distribution-probably due to initial AB0-variation (Chi(2) 4.82, df 1, p = 0.028). The odds ratio for blood group A is 2.01 and for blood group 0 is 0.5. Conclusions: The incidence of PC in the German cohort is highly associated with the AB0-system as well. More patients with blood group A suffer from PC (p < 0.001) whereas blood group 0 was less frequent in patients with PC (p < 0.001). Thus, our findings support the results from other non-German surveys. The causal trigger points of this carcinogenesis correlation are still not known

    Intensified chemotherapy and simultaneous treatment with heparin in outpatients with pancreatic cancer - the CONKO 004 pilot trial

    Get PDF
    BACKGROUND: Advanced pancreatic cancer (APC), beside its high mortality, causes the highest rates of venous thromboembolic events (VTE). Enoxaparin, a low molecular weight heparin (LMWH), is effective in prevention and treatment of VTE. Some small studies indicated that this benefit might extend to patients with cancer and probably prolong survival due to independent mechanisms. We initiated this safety investigation to get feasibility information on intensified chemotherapy combined with LMWH in outpatients with APC treated in 1st line. METHODS: The trial was a prospective, open-label, single center investigation in outpatients with inoperable pancreatic cancer who were treated with intensified first-line chemotherapy along with concomitant application of subcutaneous LMWH. The combined chemotherapy consisted of gemcitabine 1 g/m2 (30 min), 5-FU 750 mg/m2 (24 h), folinic acid 200 mg/m2 (30 min), and Cisplatin 30 mg/m2 (90 min) on day 1 and 8; q3w for the first 12 weeks (GFFC) followed by gemcitabine alone in patients without cancer progression. The simultaneous application of prophylactic enoxaparin started on day 1 of chemotherapy with a fixed dose of 40 mg daily. Statistical analyses were performed using R 3.01 with software package CMPRSK and SPSS software v19.0. RESULTS: The investigation was stopped after recruitment of 19 patients. At this time 15 patients had completed the required 12 weeks of treatment. Based on 71 cycles of GFFC + enoxaparin (median 4/pt [range: 2-4]) and 108 cycles of single-agent gemcitabine + enoxaparin (median 4/pt [range: 0-18]) the cumulative frequency of NCI-CTC toxicities grade 3/4 was below 10%. One case (5%) of a symptomatic non-lethal thromboembolic event was observed while receiving LMWH treatment. No severe bleeding event as defined in the protocol has been observed. The median overall survival was 10.05 [95%CI: 8.67-18.14] months. CONCLUSIONS: The addition of enoxaparin to GFFC chemotherapy is feasible, safe and does not appear to affect the efficacy or the toxicity profile of the chemotherapy regimen in patients with advanced pancreatic adenocarcinoma. Based on these findings we have initiated the randomized CONKO-004 trial to examine whether enoxaparin reduces the incidence of thromboembolic events or increases overall outcome. Trial registration: Clinical Trials NCT01945879
    • 

    corecore