10 research outputs found

    The effect of femoral component rotation on the five-year outcome of cemented mobile bearing total knee arthroplasty

    Get PDF
    Purpose: Performing total knee replacement, accurate alignment and neutral rotation of the femoral component are widely believed to be crucial for the ultimate success. Contrary to absolute bone referenced alignment, using a ligament balancing technique does not automatically rotate the femoral component parallel to the transepicondylar axis. In this context we established the hypothesis that rotational alignment of the femoral component parallel to the transepicondylar axis (0° ± 3°) results in better outcome than alignment outside of this range. Methods: We analysed 204 primary cemented mobile bearing total knee replacements fiveyears postoperatively. Femoral component rotation was measured on axial radiographs using the condylar twist angle (CTA). Knee society score, range of motion as well as subjective rating documented outcome. Results: In 96 knees the femoral component rotation was within the range 0 ± 3° (neutral rotation group), and in 108 knees the five-year postoperative rotational alignment of the femoral component was outside of this range (outlier group). Postoperative CTA showed a mean of 2.8° (±3.4°) internal rotation (IR) with a range between 6° external rotation (ER) and 15° IR (CI 95). No difference with regard to subjective and objective outcome could be detected. Conclusion: The present work shows that there is a large given natural variability in optimal rotational orientation, in this study between 6° ER and 15° IR, with numerous co-factors determining correct positioning of the femoral component. Further studies substantiating pre- and postoperative determinants are required to complete the understanding of resulting biomechanics in primary TK

    The Influence of Multilevel Spinal Deformity Surgery on the EuroQol 5 Dimensions' (EQ-5D) Questionnaire and Residential Status in the Elderly: A Prospective, Observational, Multicenter Study

    Get PDF
    STUDY DESIGN: Multicenter, international prospective study. OBJECTIVE: This study investigated the clinical outcome up to 2 years after multi-level spinal deformity surgery in the elderly by reporting the minimal clinically important difference (MCID) of EuroQol 5-dimensions (EQ-5D), EQ-VAS, and residential status. METHODS: As an ancillary study of 219 patients ≥60 years with spinal deformity undergoing primary instrumented fusion surgery of ≥5 levels, this study focuses on EQ-5D (3-L) as the primary outcome and EQ-VAS and residential status as secondary outcomes. Data on EQ-5D were compared between pre-operatively and postoperatively at 10 weeks, 12 months, and 24 months. An anchor-based approach was used to calculate the MCID. RESULTS: The EQ-5D index and EQ-VAS, respectively, improved significantly at each time point compared to pre-operatively (from .53 (SD .21) and 55.6 (SD 23.0) pre-operatively to .64 (SD .18) and 65.8 (SD 18.7) at 10 weeks, .74 (SD .18) and 72.7 (SD 18.1) at 12 months, and .73 (SD .20) and 70.4 (SD 20.4) at 24 months). 217 (99.1%) patients lived at home pre-operatively, while 186 (88.6%), 184 (98.4%), and 172 (100%) did so at 10 weeks, 12 months, and 24 months, respectively. Our calculated MCID for the EQ-5D index at 1 year was .22 (95% CI .15-.29). CONCLUSIONS: The EQ-5D index significantly increased at each time point over 24 months after ≥5 level spinal deformity surgery in elderly patients. The MCID of the EQ-5D-3 L was .22. Patients living at home pre-operatively can expect to be able to live at home 2 years postoperatively

    Shoulder Muscle Strength and Neuromuscular Activation 2 Years after Reverse Shoulder Prosthesis—An Experimental Case Control Study

    No full text
    Although reverse shoulder arthroplasty (RSA) has shown successful postoperative outcomes, little is known about compensatory activation patterns of remaining shoulder muscles following RSA. The purpose of this experimental case control series was to investigate shoulder muscle strength and neuromuscular activation of deltoid and teres minor muscles 2 years after RSA. Humerus lengthening, center-of-rotation medialization, maximal voluntary strength, and electromyographic (EMG) activity were compared between the operated and the non-operated side of 13 patients (mean age: 73 years). Shoulder muscle strength was significantly lower on the operated side for external rotation (−54%), internal rotation (−20%), and adduction (−13%). Agonist deltoid EMG activity was lower on the operated side for shoulder flexion, extension, and internal and external rotation (p < 0.05). Antagonist deltoid coactivation was higher on the operated side for external rotation (p < 0.001). Large correlation coefficients were observed between shoulder adductor strength asymmetry and both center-of-rotation medialization (r = −0.73) and humerus lengthening (r = 0.71). Shoulder abduction strength and neuromuscular activation were well preserved 2 years after RSA, while persistent strength and activation deficits were observed for shoulder adduction and internal and external rotation. Additional studies are required to elucidate shoulder neuromuscular activation patterns before and after RSA to support decision making for surgical, implant design, and rehabilitation choices

    Treatment considerations for cervical and cervicothoracic spondylodiscitis associated with esophageal fistula due to cancer history or accidental injury: a 9-patient case series

    No full text
    The combination of cervical spondylodiscitis and esophageal fistula is rare but life-threatening. Due to both the rarity of these conditions' coincidence and the complexity and heterogeneity of individual cases, there is no optimal treatment or management approach. The aims of this study are to obtain an overview of patients' outcomes and to discuss treatment options

    Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation

    No full text
    Transcutaneous spinal cord stimulation is a non-invasive method for neuromodulation of sensorimotor function. Its main mechanism of action results from the activation of afferent fibers in the posterior roots—the same structures as targeted by epidural stimulation. Here, we investigated the influence of sagittal spine alignment on the capacity of the surface-electrode-based stimulation to activate these neural structures. We evaluated electromyographic responses evoked in the lower limbs of ten healthy individuals during extension, flexion, and neutral alignment of the thoracolumbar spine. To control for position-specific effects, stimulation in these spine alignment conditions was performed in four different body positions. In comparison to neutral and extended spine alignment, flexion of the spine resulted in a strong reduction of the response amplitudes. There was no such effect on tibial-nerve evoked H reflexes. Further, there was a reduction of post-activation depression of the responses to transcutaneous spinal cord stimulation evoked in spinal flexion. Thus, afferent fibers were reliably activated with neutral and extended spine alignment. Spinal flexion, however, reduced the capacity of the stimulation to activate afferent fibers and led to the co-activation of motor fibers in the anterior roots. This change of action was due to biophysical rather than neurophysiological influences. We recommend applying transcutaneous spinal cord stimulation in body positions that allow individuals to maintain a neutral or extended spine

    Revision Rate of Misplaced Pedicle Screws of the Thoracolumbar Spine-Comparison of Three-Dimensional Fluoroscopy Navigation with Freehand Placement: A Systematic Analysis and Review of the Literature.

    No full text
    BACKGROUND Recent studies have shown higher accuracy rates of image-guided pedicle screw placement compared to freehand (FH) placement. However, data focusing on the impact of spinal navigation on the rate of revision surgeries caused by misplaced pedicle screws (PS) are scarce. OBJECTIVE This study is aimed at identifying the rate of revision surgeries for misplaced PS comparing three-dimensional (3D) fluoroscopy navigation (3DFL) with FH PS placement. METHODS A retrospective analysis was conducted of 2232 patients (mean age, 65.3 ± 13.5 years) with 13,703 implanted PS who underwent instrumentation of the thoracolumbar spine between 2007 and 2015. Group 1 received surgery with use of 3DFL (January 2011 to December 2015), group 2 received surgery in the FH technique (April 2007 to December 2015). Because the use of 3DFL was initiated in January 2011, the examined period for 3DFL-navigated surgeries is shorter. Patients routinely received postoperative computed tomography scans and/or intraoperative control 3D scans. RESULTS There was an overall rate of revision surgeries for malpositioned PS of 2.9%. In the 3DFL group, the rate of secondary revision surgeries was significantly lower with 1.35% (15/1112 patients) compared to 4.38% (49/1120 patients) in the FH group, respectively (odds ratio, 3.35; P < 0.01). Of all PS in the 3DFL group (30/7548 PS), 0.40% needed revision surgery (P < 0.01) compared to 1.14% in the FH group (70/6155 PS). CONCLUSIONS We were able to show that the use of 3DFL-navigated PS placement significantly reduces the rate of revision surgeries after posterior spinal instrumentation compared to freehand PS placement

    Predicting medical complications in spine surgery : evaluation of a novel online risk calculator

    No full text
    Purpose The preoperative prediction of medical complications is essential to optimize perioperative management. SpineSage is a free of charge online calculator to predict medical complications in spine surgery. The current study utilizes it in patients undergoing spine surgery to assess whether the predicted risks would correlate with the actual complication rate in clinical practice. Methods A total of 273 consecutive patients who underwent spinal surgery were assessed. The risk of medical complications was predicted for each patient, and all medical complications were recorded within 30 days of surgery. Based on their predicted risk of complication, patients were divided into three risk groups (<15, 1530, >30%). Results The predicted overall risk of medical complications was 14.7% and was comparable to the observed complication rate of 16.1%. The predicted risk for major medical complications (3.8%) was also similar to the observed complication rate (3.3%). Detailed analysis of the segmented risk groups suggests a close correlation between predicted and actual complication rates. Receiver operating characteristic analysis revealed an area under the curve of 0.71 (p<0.001) for the prediction of overall medical complications and 0.85 (p<0.001) for major complications. Conclusions The online risk calculator predicted both overall and major medical complications. The tool can assist in preoperative planning and counseling of patients.(VLID)360157
    corecore