108 research outputs found

    Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy

    Full text link
    The electron-phonon coupling in potassium-doped graphene on Ir(111) is studied via the renormalization of the pi* band near the Fermi level, using angle-resolved photoemission spectroscopy. The renormalization is found to be fairly weak and almost isotropic, with a mass enhancement parameter of lambda= 0.28(6) for both the K-M and the K-G direction. These results are found to agree well with recent first principles calculations.Comment: 5 pages, 3 figure

    Effect of impurity substitution on band structure and mass renormalization of the correlated FeTe0.5_{0.5}Se0.5_{0.5} superconductor

    Get PDF
    Using angle-resolved photoemission spectroscopy (ARPES), we studied the effect of the impurity potential on the electronic structure of FeTe0.5_{0.5}Se0.5_{0.5} superconductor by substituting 10\% of Ni for Fe which leads to an electron doping of the system. We could resolve three hole pockets near the zone center and an electron pocket near the zone corner in the case of FeTe0.5_{0.5}Se0.5_{0.5}, whereas only two hole pockets near the zone center and an electron pocket near the zone corner are resolved in the case of Fe0.9_{0.9}Ni0.1_{0.1}Te0.5_{0.5}Se0.5_{0.5}, suggesting that the hole pocket having predominantly the xyxy orbital character is very sensitive to the impurity scattering. Upon electron doping, the size of the hole pockets decrease and the size of the electron pockets increase as compared to the host compound. However, the observed changes in the size of the electron and hole pockets are not consistent with the rigid-band model. Moreover, the effective mass of the hole pockets is reduced near the zone center and of the electron pockets is increased near the zone corner in the doped Fe0.9_{0.9}Ni0.1_{0.1}Te0.5_{0.5}Se0.5_{0.5} as compared to FeTe0.5_{0.5}Se0.5_{0.5}. We refer these observations to the changes of the spectral function due to the effect of the impurity potential of the dopants.Comment: 8 pages, 3 figure

    Topological surface state under graphene for two-dimensional spintronics in air

    Get PDF
    Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surface states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({\alpha}_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state.Comment: includes supplementary informatio

    How chemical pressure affects the fundamental properties of rare-earth pnictides: an ARPES view

    Get PDF
    Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences in the Fe-derived band structure for these materials, implying a rather different hybridization of valence electrons to the localized 4f orbitals. In particular, our results suggest that the ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe 3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a strong interaction of Fe 3d_3z^2-r^2 orbitals.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. B (Rapid

    Anisotropic effect of warping on the lifetime broadening of topological surface states in angle-resolved photoemission from Bi2 Te3

    Get PDF
    We analyze the strong hexagonal warping of the Dirac cone of Bi2Te3 by angle- resolved photoemission. Along Γ¯¯¯M¯¯¯, the dispersion deviates from a linear behavior meaning that the Dirac cone is warped outwards and not inwards. We show that this introduces an anisotropy in the lifetime broadening of the topological surface state which is larger along Γ¯¯¯K¯¯¯. The result is not consistent with an explanation by nesting properties. Based on the theoretically predicted modifications of the ground-state spin texture of a strongly warped Dirac cone, we propose spin-dependent scattering processes as explanation for the anisotropic scattering rates. These results could help paving the way for optimizing future spintronic devices using topological insulators and controlling surface-scattering processes via external gate voltages
    corecore