137 research outputs found

    Detached Eddy Simulation on the Turbulent Flow in a Stirred Tank

    Get PDF
    A detached eddy simulation (DES), a large-eddy simulation (LES), and a k-Īµ-based Reynolds averaged Navier-Stokes (RANS) calculation on the single phase turbulent flow in a fully baffled stirred tank, agitated by a Rushton turbine is presented. The DES used here is based on the Spalart-Allmaras turbulence model solved on a grid containing about a million control volumes. The standard k-Īµ and LES were considered here for comparison purposes. Predictions of the impeller-angle-resolved and time-averaged turbulent flow have been evaluated and compared with data from laser doppler anemometry measurements. The effects of the turbulence model on the predictions of the mean velocity components and the turbulent kinetic energy are most pronounced in the (highly anisotropic) trailing vortex core region, with specifically DES performing well. The LESā€”that was performed on the same grid as the DESā€”appears to lack resolution in the boundary layers on the surface of the impeller. The findings suggest that DES provides a more accurate prediction of the features of the turbulent flows in a stirred tank compared with RANS-based models and at the same time alleviates resolution requirements of LES close to walls

    Computational fluid mixing

    Get PDF
    Computational fluid dynamics (CFD) is an extremely powerful tool for solving problems associated with flow, mixing, heat and mass transfer and chemical reaction. Although the equations of motion for fluid flow were established in the first half of the nineteenth century (e.g. Navier, 1822; Stokes, 1845), it was not until the arrival of digital computers in the 1960s and 1970s that it became feasible to perform numerical simulations of complex engineering flows. In these early days, CFD was a very much a research tool and most of the early work was aimed at developing numerical methods, solution algorithms and Reynolds-averaged turbulence models. However, in the 1980s, the first commercial codes emerged ā€” e.g. PHOENICS, FLUENT, FIDAP, Star-CD, FLOW3D (which later became CFX) ā€” providing general purpose software packages for both academic and industry users. The aerospace and automotive industries were amongst the first to embrace the use of CFD in engineering design, but from the 1990s onwards commercial codes have found widespread applications, for example in: biomedical engineering, environmental and atmospheric modelling, meteorology, chemical reaction engineering and more recently in the food and beverage industries. This chapter will focus on mixing vessel applications for the last two of these industry sectors, where CFD is increasingly used to provide process understanding and semi-quantitative analysis. In their review, Norton and Sun (2006) presented a graph showing the very significant increase in the number of peer-reviewed papers related to CFD applications to food process engineering. Figure 0.1 is an updated version of this graph, containing more recent data and showing that the number of papers that specifically analyse food mixing operations using CFD is still relatively small. In contrast, there are a vast numbers of papers on CFD simulation of (i) other food process operations, (e.g. drying, sterilisation, thermal treatment and extrusion, many of which are described by Sun (2007)) and (ii) more conventional mixing operations in the chemicals and specialty product industries (see for example, Marshall and Bakker (2004)). This chapter will outline the background knowledge required for CFD studies, present some examples of CFD modelling of mixing vessel flows and finally will discuss the current difficulties in applying this approach to food mixing processes

    Scale-down studies for the scale-up of a recombinant Corynebacterium glutamicum fed-batch fermentation:loss of homogeneity leads to lower levels of cadaverine production

    Get PDF
    BACKGROUND: The loss of efficiency and performance of bioprocesses on scale-up is well known, but not fully understood. This work addresses this problem, by studying the effect of some fermentation gradients (pH, glucose and oxygen) that occur at the larger scale in a bench-scale two-compartment reactor [plug flow reactor (PFR) + stirred tank reactor (STR)] using the cadaverine-producing recombinant Corynebacterium glutamicum DM1945 Ī”act3 Ptuf-ldcC_OPT. The new scale-down strategy developed here studied the effect of increasing the magnitude of fermentation gradients by considering not only the average cell residence time in the PFR (Ļ„PFR), but also the mean frequency at which the bacterial cells entered the PFR (fm) section of the two-compartment reactor. RESULTS: On implementing this strategy the cadaverine production decreased on average by 26%, 49% and 59% when the Ļ„PFR was increased from 1 to 2 min and then 5 min respectively compared to the control fermentation. The carbon dioxide productivity was highest (3.1-fold that of the control) at a Ļ„PFR of 5 min, but no losses were observed in biomass production. However, the population of viable but non-culturable cells increased as the magnitude of fermentation gradients was increased. The new scale-down approach was also shown to have a bigger impact on fermentation performance than the traditional one. CONCLUSION: This study demonstrated that C. glutamicum DM1945 Ī”act3 Ptuf-ldcC_OPT physiological response was a function of the magnitude of fermentation gradients simulated. The adaptations of a bacterial cell within a heterogeneous environment ultimately result in losses in fermentation productivity as observed here

    Developments in fluidised bed freeze drying

    Get PDF
    Developments in fluidised bed freeze dryin

    Insight into the large-scale upstream fermentation environment using scaled-down models

    Get PDF
    Scaledā€down models are smallā€scale bioreactors, used to mimic the chemical (pH, nutrient and dissolved oxygen) and physical gradients (pressure, viscosity and temperature) known to occur in the largeā€scale fermenter. Conventionally, before scaling up any bioprocess, smallā€scale bioreactors are used for strain selection, characterisation and optimisation. The typical smallā€scale environment is homogenous, hence all the cells held within the smallā€scale bioreactor can be assumed to experience the same condition at any point in time. However, for the largeā€scale bioreactor, this is not the case, due to its inhomogeneous environment. Three different scaledā€down models are reviewed here, and the results suggest that a bacterium responds to changes in its environment rapidly and the magnitude of response to environmental oscillations is organismā€specific. The reaction and adaption of a bacterium to an inhomogeneous environment in most cases result in productivity and quality losses. This review concludes that consideration of fermentation gradients should be paramount when researchers screen for high yielding mutants in bioprocess development and doing this would help mitigate performance loss on scaleā€up

    State feedback linearization and adaptive model predictive control applied to a simulated MSMPR crystalliser [Abstract]

    Get PDF
    State feedback linearization and adaptive model predictive control applied to a simulated MSMPR crystalliser [Abstract

    Microneedle-assisted microparticle delivery by gene guns: experiments and modeling on the effects of particle characteristics.

    Get PDF
    Abstract Microneedles (MNs) have been shown to enhance the penetration depths of microparticles delivered by gene gun. This study aims to investigate the penetration of model microparticle materials, namely, tungsten (<1ā€‰Ī¼m diameter) and stainless steel (18 and 30ā€‰Ī¼m diameters) into a skin mimicking agarose gel to determine the effects of particle characteristics (mainly particle size). A number of experiments have been processed to analyze the passage percentage and the penetration depth of these microparticles in relation to the operating pressures and MN lengths. A comparison between the stainless steel and tungsten microparticles has been discussed, e.g. passage percentage, penetration depth. The passage percentage of tungsten microparticles is found to be less than the stainless steel. It is worth mentioning that the tungsten microparticles present unfavourable results which show that they cannot penetrate into the skin mimicking agarose gel without the help of MN due to insufficient momentum due to the smaller particle size. This condition does not occur for stainless steel microparticles. In order to further understand the penetration of the microparticles, a mathematical model has been built based on the experimental set up. The penetration depth of the microparticles is analyzed in relation to the size, operating pressure and MN length for conditions that cannot be obtained in the experiments. In addition, the penetration depth difference between stainless steel and tungsten microparticles is studied using the developed model to further understand the effect of an increased particle density and size on the penetration depth

    PIV study of the flow field generated by a sawtooth impeller

    Get PDF
    Stereoscopic and high-speed particle image velocimetry (PIV) techniques have been employed to study the flow field induced by a sawtooth (EkatoMizer) impeller, operated in the fully turbulent flow regime at an impeller speed of 1500 rpm. Ensemble-averaged mean flow fields and turbulence quantities were calculated for a region close to the impeller blades. The flow was found to be anisotropic near the impeller and exhibited return-to-isotropy behaviour further away from it. Macroinstabilities were found to have a high probability of occurrence in the discharge stream. All three velocity components from the stereo-PIV measurements were used to estimate the dissipation rate, by adopting a large eddy simulation (LES) analogy. Spurious vectors distorting the dissipation rate calculation were identified, and various standard deviation filters were applied for vector validation. By evaluating the filtered dissipation rate profiles against the multi-fractal intermittency model of Meneveau and Sreenivasan (1991), the global standard deviation filter was found to be the most suitable type. The ratio of the maximum to the mean dissipation rate for the EkatoMizer discharge stream was found to be similar to that reported for Rushton disk turbine and pitched-blade turbine impellers in the literature, raising questions about the reported high-shear advantage of sawtooth impellers

    Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel

    Get PDF
    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 Ī¼m was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 Ā± 42, 1009 Ā± 49 and 656 Ā± 85 Ī¼m at 4.5 bar pressure for spherical micro-particles of 18 Ā± 7 Ī¼m diameter when we used MNs of 1500, 1200 and 750 Ī¼m length, respectively

    An experimental study of microneedle-assisted microparticle delivery

    Get PDF
    A set of well-defined experiments has been carried out to explore whether microneedles (MNs) can enhance the penetration depths of microparticles moving at high velocity such as those expected in gene guns for delivery of gene-loaded microparticles into target tissues. These experiments are based on applying solid MNs that are used to reduce the effect of mechanical barrier function of the target so as to allow delivery of microparticles at less imposed pressure as compared with most typical gene guns. Further, a low-cost material, namely, biomedical-grade stainless steel microparticle with size ranging between 1 and 20 Ī¼m, has been used in this study. The microparticles are compressed and bound in the form of a cylindrical pellet and mounted on a ground slide, which are then accelerated together by compressed air through a barrel. When the ground slide reaches the end of the barrel, the pellet is separated from the ground slide and is broken down into particle form by a mesh that is placed at the end of the barrel. Subsequently, these particles penetrate into the target. This paper investigates the implications of velocity of the pellet along with various other important factors that affect the particle delivery into the target. Our results suggest that the particle passage increases with an increase in pressure, mesh pore size, and decreases with increase in polyvinylpyrrolidone concentration. Most importantly, it is shown that MNs increase the penetration depths of the particles
    • ā€¦
    corecore