61 research outputs found

    Performance of adiabatic melting as a method to pursue the lowest possible temperature in 3^3He and 3^3He-4^4He mixture at the 4^4He crystallization pressure

    Full text link
    We studied a novel cooling method, in which 3^3He and 4^4He are mixed at the 4^4He crystallization pressure at temperatures below 0.5 mK0.5\,\mathrm{mK}. We describe the experimental setup in detail, and present an analysis of its performance under varying isotope contents, temperatures, and operational modes. Further, we developed a computational model of the system, which was required to determine the lowest temperatures obtained, since our mechanical oscillator thermometers already became insensitive at the low end of the temperature range, extending down to (90±20) μK≈Tc(29±5)\left(90\pm20\right)\,\mathrm{\mu K\approx}\frac{T_{c}}{\left(29\pm5\right)} (TcT_{c} of pure 3^3He). We did not observe any indication of superfluidity of the 3^3He component in the isotope mixture. The performance of the setup was limited by the background heat leak of the order of 30 pW30\,\mathrm{pW} at low melting rates, and by the heat leak caused by the flow of 4^4He in the superleak line at high melting rates up to 500 μmol/s500\,\mathrm{\mu mol/s}. The optimal mixing rate between 3^3He and 4^4He, with the heat leak taken into account, was found to be about 100..150 μmol/s100..150\,\mathrm{\mu mol/s}. We suggest improvements to the experimental design to reduce the ultimate achievable temperature further.Comment: 39 pages, 24 figure

    Activation of the motivation-related ventral striatum during delusional experience

    Get PDF
    Delusion is the most characteristic symptom of psychosis, occurring in almost all first-episode psychosis patients. The motivational salience hypothesis suggests delusion to originate from the experience of abnormal motivational salience. Whether the motivation-related brain circuitries are activated during the actual delusional experience remains, however, unknown. We used a forced-choice answering tree at random intervals during functional magnetic resonance imaging to capture delusional and non-delusional spontaneous experiences in patients with first-episode psychosis (n = 31) or clinical high-risk state (n = 7). The motivation-related brain regions were identified by an automated meta-analysis of 149 studies. Thirteen first-episode patients reported both delusional and non-delusional spontaneous experiences. In these patients, delusional experiences were related to stronger activation of the ventral striatum in both hemispheres. This activation overlapped with the most strongly motivation-related brain regions. These findings provide an empirical link between the actual delusional experience and the motivational salience hypothesis. Further use and development of the present methods in localizing the neurobiological basis of the most characteristic symptoms may be useful in the search for etiopathogenic pathways that result in psychotic disorders.Peer reviewe

    Navigation and Mapping in Forest Environment Using Sparse Point Clouds

    Get PDF
    Odometry during forest operations is demanding, involving limited field of vision (FOV), back-and-forth work cycle movements, and occasional close obstacles, which create problems for state-of-the-art systems. We propose a two-phase on-board process, where tree stem registration produces a sparse point cloud (PC) which is then used for simultaneous location and mapping (SLAM). A field test was carried out using a harvester with a laser scanner and a global navigation satellite system (GNSS) performing forest thinning over a 520 m strip route. Two SLAM methods are used: The proposed sparse SLAM (sSLAM) and a standard method, LeGO-LOAM (LLOAM). A generic SLAM post-processing method is presented, which improves the odometric accuracy with a small additional processing cost. The sSLAM method uses only tree stem centers, reducing the allocated memory to approximately 1% of the total PC size. Odometry and mapping comparisons between sSLAM and LLOAM are presented. Both methods show 85% agreement in registration within 15 m of the strip road and odometric accuracy of 0.5 m per 100 m. Accuracy is evaluated by comparing the harvester location derived through odometry to locations collected by a GNSS receiver mounted on the harvester.</p

    Intention Seekers: Conspiracist Ideation and Biased Attributions of Intentionality

    Get PDF
    Conspiracist beliefs are widespread and potentially hazardous. A growing body of research suggests that cognitive biases may play a role in endorsement of conspiracy theories. The current research examines the novel hypothesis that individuals who are biased towards inferring intentional explanations for ambiguous actions are more likely to endorse conspiracy theories, which portray events as the exclusive product of intentional agency. Study 1 replicated a previously observed relationship between conspiracist ideation and individual differences in anthropomorphisation. Studies 2 and 3 report a relationship between conspiracism and inferences of intentionality for imagined ambiguous events. Additionally, Study 3 again found conspiracist ideation to be predicted by individual differences in anthropomorphism. Contrary to expectations, however, the relationship was not mediated by the intentionality bias. The findings are discussed in terms of a domain-general intentionality bias making conspiracy theories appear particularly plausible. Alternative explanations are suggested for the association between conspiracism and anthropomorphism

    Energy efficient opportunistic edge computing for the Internet of Things

    No full text
    Abstract Edge computing in Internet of Things enhances application execution by retrieving cloud resources to the close proximity of resource-constrained end devices at the edge and by enabling task offloading from these devices to the edge. In this paper, edge computing platforms are extended into the data producing end devices, including wireless sensor network nodes and smartphones, with mobile agents. Mobile agents operate, as a multi-agent system, on the opportunistic network of heterogeneous end devices. The benefits include autonomous, asynchronous and adaptive execution and relocation of application-specific computational tasks, while taking into account the local resource availability. In addition to the vertical edge connectivity, mobile agents enable horizontal sharing of information between these devices. Use cases are presented where mobile agents address challenges in current edge computing platforms. An edge application is evaluated where mobile agents as a multi-agent system process sensor data in a heterogeneous set of end devices, control the operation of the devices and share their tasks results in the system. The mobile agents operate atop a REST-compliant software agent framework that relies on embedded Web services for interoperability. A real-world evaluation and large-scale simulations show that energy consumption is reduced significantly, up to 60%, in the edge application execution

    Thermodynamics of adiabatic melting of solid He 4 in liquid He 3

    No full text
    In the cooling concept by adiabatic melting, solid He4 is converted to liquid and mixed with He3 to produce cooling power directly in the liquid phase. This method overcomes the thermal boundary resistance that conventionally limits the lowest available temperatures in the helium fluids and hence makes it possible to reach for the temperatures significantly below 100μK. In this paper we focus on the thermodynamics of the melting process, and examine the factors affecting the lowest temperatures achievable. We show that the amount of He3-He4 mixture in the initial state, before the melting, can substantially lift the final temperature, as its normal Fermi fluid entropy will remain relatively large compared to the entropy of superfluid He3. We present the collection of formulas and parameters to work out the thermodynamics of the process at very low temperatures, study the heat capacity and entropy of the system with different liquid He3, mixture, and solid He4 contents, and use them to estimate the lowest temperatures achievable by the melting process, as well as compare our calculations to the experimental saturated He3-He4 mixture crystallization pressure data. Realistic expectations in the execution of the actual experiment are considered. Further, we study the cooling power of the process, and find the coefficient connecting the melting rate of solid He4 to the dilution rate of He3.Peer reviewe
    • …
    corecore