3,124 research outputs found
Collective oscillations of a Fermi gas in the unitarity limit: Temperature effects and the role of pair correlations
We present detailed measurements of the frequency and damping of three
different collective modes in an ultracold trapped Fermi gas of Li atoms
with resonantly tuned interactions. The measurements are carried out over a
wide range of temperatures. We focus on the unitarity limit, where the
scattering length is much greater than all other relevant length scales. The
results are compared to theoretical calculations that take into account Pauli
blocking and pair correlations in the normal state above the critical
temperature for superfluidity. We show that these two effects nearly compensate
each other and the behavior of the gas is close to the one of a classical gas.Comment: 8 pages, 5 figure
The Nod-Like Receptor (NLR) Family: A Tale of Similarities and Differences
Innate immunity represents an important system with a variety of vital processes at the core of many diseases. In recent years, the central role of the Nod-like receptor (NLR) protein family became increasingly appreciated in innate immune responses. NLRs are classified as part of the signal transduction ATPases with numerous domains (STAND) clade within the AAA+ ATPase family. They typically feature an N-terminal effector domain, a central nucleotide-binding domain (NACHT) and a C-terminal ligand-binding region that is composed of several leucine-rich repeats (LRRs). NLRs are believed to initiate or regulate host defense pathways through formation of signaling platforms that subsequently trigger the activation of inflammatory caspases and NF-kB. Despite their fundamental role in orchestrating key pathways in innate immunity, their mode of action in molecular terms remains largely unknown. Here we present the first comprehensive sequence and structure modeling analysis of NLR proteins, revealing that NLRs posses a domain architecture similar to the apoptotic initiator protein Apaf-1. Apaf-1 performs its cellular function by the formation of a heptameric platform, dubbed apoptosome, ultimately triggering the controlled demise of the affected cell. The mechanism of apoptosome formation by Apaf-1 potentially offers insight into the activation mechanisms of NLR proteins. Multiple sequence alignment analysis and homology modeling revealed Apaf-1-like structural features in most members of the NLR family, suggesting a similar biochemical behaviour in catalytic activity and oligomerization. Evolutionary tree comparisons substantiate the conservation of characteristic functional regions within the NLR family and are in good agreement with domain distributions found in distinct NLRs. Importantly, the analysis of LRR domains reveals surprisingly low conservation levels among putative ligand-binding motifs. The same is true for the effector domains exhibiting distinct interfaces ensuring specific interactions with downstream target proteins. All together these factors suggest specific biological functions for individual NLRs
Hypergraph model of social tagging networks
The past few years have witnessed the great success of a new family of
paradigms, so-called folksonomy, which allows users to freely associate tags to
resources and efficiently manage them. In order to uncover the underlying
structures and user behaviors in folksonomy, in this paper, we propose an
evolutionary hypergrah model to explain the emerging statistical properties.
The present model introduces a novel mechanism that one can not only assign
tags to resources, but also retrieve resources via collaborative tags. We then
compare the model with a real-world dataset: \emph{Del.icio.us}. Indeed, the
present model shows considerable agreement with the empirical data in following
aspects: power-law hyperdegree distributions, negtive correlation between
clustering coefficients and hyperdegrees, and small average distances.
Furthermore, the model indicates that most tagging behaviors are motivated by
labeling tags to resources, and tags play a significant role in effectively
retrieving interesting resources and making acquaintance with congenial
friends. The proposed model may shed some light on the in-depth understanding
of the structure and function of folksonomy.Comment: 7 pages,7 figures, 32 reference
Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2
Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC
by solid state graphitization, whereby the number of layers was pre-assigned by
angle-resolved ultraviolet photoemission spectroscopy. It was found that the
only unambiguous fingerprint in Raman spectroscopy to identify the number of
layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The
Raman spectra of epitaxial graphene show significant differences as compared to
micromechanically cleaved graphene obtained from highly oriented pyrolytic
graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not
exhibit any obvious shoulder structures but it is much broader and almost
resembles a single-peak even for multilayers. Flakes of epitaxial graphene were
transferred from SiC onto SiO2 for further Raman studies. A comparison of the
Raman data obtained for graphene on SiC with data for epitaxial graphene
transferred to SiO2 reveals that the G peak blue-shift is clearly due to the
SiC substrate. The broadened 2D peak however stems from the graphene structure
itself and not from the substrate.Comment: 27 pages, 8 figure
- …