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1. INTRODUCTION

The objective of this paper is to investigate the perturbation of nonlinear operators
with respect to such properties as closedness, Lipschitz invertibility, resolvent, and
spectrum. Our results are primarily nonlinear analogues to the linear case as set
forth by T. KaTo0 in [9] As in the linear case we require criteria for the “‘size’” of the
perturbing operator and for this purpose we will use nonlinear analogues to the linear
notion of relative boundedness. Our main attention will be given to discontinuous
nonlinear operators which correspond to unbounded linear ones.

In Section 2 we will describe notation and terminology. In Section 3 we will con-
sider the stability of closedness under relatively Lipschitz perturbations and in
Section 4 the stability of demiclosedness and weakly closedness under relatively
bounded perturbations. In Section 5 we will investigate resolvent and spectral pro-
perties with respect to relatively Lipschitz perturbations. In Section 6 we shall
analyze the continuity and bifurcation of the spectrum of operators Lipschitz in the
graph norm of a closed linear operator.

2. NOTATION AND TERMINOLOGY

In what follows X and Y will denote Banach spaces (real or complex), X* will
denote the dual space of X, and X, will denote X with the weak topology. We will
use — to denote strong convergence and ¥— to denote weak convergence. If S is
a subset of X then S is the strong closure of S and |S| = inf. | x|. Furthermore,
X x Y will mean the product space with ||(x, y)| = (|x]* + [v]|*)"*

Because of the recent interest in nonlinear accretive operator theory, where multi-
valued operators play an important role and where relative boundedness conditions
have been used in its perturbation theory (see, e.g., [1], [3], [4], [5]. [10]), we
prefer to allow for operators to be multi-valued in our investigation. Accordingly,
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m(X, Y) will denote the set of multi-valued operators from X to Y, or, equivalently,
subsets of X x Y. If Aem(X,Y) we will identify 4 with its graph G(4) in X x Y.
For 4 e m(X,Y) we have

(2.1) D(A) = {x € X : there exists some y €Y such that (x, y) e 4} ;
(2.2) R(A4) = {y e Y : there exists some x € X such that (x, y) € 4} ;

(2.3) : if xeD(4), Ax ={yeY:(x,y)eA}.

For A, Te m(X,Y), Be m(Y, X), and ¢ a scalar we define

(24 A = (5, ) (v ) € A}

(2.5) A+T={(x,y +2):(x,y)eA4 and (x,z) e T} ;

(2.6)  BA = {(x, z) : there exists y €Y such that (x, y)e 4 and (y, z) € B} .

We will let s(X, Y) denote the subset of m(X, Y) consisting of single-valued
operators, 1(X, Y) the subset of s(X, Y) consisting of linear operators, and b1(X, Y)
the subset of 1(X,Y) consisting of bounded everywhere defined linear operators.
By lip (X,Y) we denote the subset of s(X,Y) consisting of Lipschitz continuous
operators. If 4 € lip (X, Y) then |A| denotes the Lipschitz constant for A, that is,

(2.7) |4 = sup[ax — ay|/|x = ] .

x, yeD(A), x*y

Finally, for Aem(X,Y), “A™" exists” means that for each y e R(A) there exists
a unique x € D(A) such that y € Ax. In this case A" e s(Y, X) is given by

(2.8) A7 ={(r,x):(x,y)e4}.

3. RELATIVE LIPSCHITZ CONDITIONS
Definition 3.1. 4 € m(X,Y) is closed if and only if A (or G(A4)) is closed in X x Y.
Equivalently, 4 € m(X,Y) is closed if and only if
(3.1) whenever {x,} < D(4), x,—>xeX, y,eAx,, and
y,—>yeY, then xeD(4) and yeAx.

The following proposition asserts that ‘“‘closedness is stable under continuous
perturbations”.

Proposition 3.1. Let Aes(X,Y), Te m(X,Y), D(T) C/D(A), and let A be conti-
nuous with D(A) closed. Then A + Tis closed if and only if T is.

Proof. Let Tbe closed, x, = x, u, € (A + T) x,, u, = U, u,, = Ax, + ¥, Yp€ Tx,.
Then Ax, — Ax whence y, —» u — Ax. Then x € D(T) and u — Ax € Tx since T is
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closed. But then A4 + T is closed since u = Ax + (u — Ax)e (4 + T)x. Now let
A + T be closed, x, > x, v, €Tx,, y,— y. Then u, = Ax, + y, e (4 + T) x, and
u, > Ax + y. Since 4 + T is closed, (x, Ax + y)e A + T. Then x e D(T) and
v € Tx, because (x, z) € A + Tif and only if z = Ax + w uniquely where (x, w) e T.
Therefore T is closed.

It is obvious that every A e m(X,Y) has a closed extension in m(X, Y), namely,

A, where G(A.) = G(A). 1t is of interest, however, to determine when A4 € s(X, Y)
has a closed extension in s(X, Y).

Definition 3.2. 4 € s(X, Y) is called closable if and only if A has a closed extension

in s(X,Y). Evidently, A es(X,Y) is closable if and only if G(A) = G(A4,) where
A, es(X,Y). A, is clearly the smallest closed extension of A in s(X.Y). Moreover,
A = A_if and only if A is closed and A is closable if and only if

(3.2)  whenever {u,}. {v,} = D(4), u,—>x, v,—>x, Au,—>u,
and Av, > v, then u=v.

Propositions 3.1 asserts the stability of closedness without any assumption on the
“size” of the perturbing operator A, but imposes the strong condition that A be
continuous and have closed domain. In order to weaken this condition we have to
make sure that the perturbation is “small”’. A useful notion for this purpose gener-
alizes the concept of relative boundedness in the linear case (see [9], p. 190) and is
provided by

Definition 3.3. Let A € s(X, Y), Te m(X, Y), D(T) = D(A). Ais relatively Lipschitz
with respect to T (or T-Lipschitz) if and only if there exist constants a, b = 0 such
that

(3.3) [Ax — Ay| < a|x — y| + b|Tx — Ty| forall x,yeD(T).

The infimum of all possible constants b in (3.3) is the T-Lipschitz constant for A.
Example 3.1. Let 4, Te 1(X,Y), D(T) = D(A) such that (3.3) is satisfied (for

examples in the linear case see [9], p. 191—194). Let F e lip (Y, X) with D(F) =Y

and define B = FA where D(B) = D(A). Then D(T) = D(B) and for all x, y € D(T)

IBx — By] < |Fl [ Ax = Ay] < alF| |x — y] + blF| |7x — T3]
so that B is T-Lipschitz with T-Lipschitz constant < b|Fl.

Example 3.2. Let 4, T be as in Example 3.1 and let F elip (X, X) such that
F(D(A)) = D(A4) and F(D(T)) = D(T). Define B = AF where D(B) = D(A)and S =
= TF where D(S) = D(T). Then D(S) = D(B) and for all x, y € D(S)

|Bx — By = [|4(Fx = Fy)| = a[F| [|x = y[ + b]Sx — S¥|

so that B is S-Lipschitz with S-Lipschitz constant < b.
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Example 3.3. Let Aes(X,Y), Fes(Y, X), F~' elip(X,Y), and let R(4) = D(F).
Define T = FA where D(T) = D(A). Then for all x, y € D(T)

|Ax — Ay| = |F~'FAx — F~'FAy| < |F7|||Tx — Ty|
so that A is T-Lipschitz with T-Lipschitz constant < [F™'|.
Proposition 3.2. Let Aes(X,Y), A closed, Te m(X,Y) such that D(T) = D(A)
and (3.3) is satisfied with b < 1. Then A + Tis closed if and only if Tis.

Proof. Let {x,} =« D(4 + T)= D(T) and let u,e(A + T)x, where u, =
= Ax, + y, with y, € Tx,. From (3.3) we obtain

(34) —allxw = x| + (1= 0) [ya = yull = Jun —w] =

IIA

allxy = x| + (1 +b) [y = vl -

Suppose T is closed, x, — x, and u, — u. By (3.4) y, > some y and Ax - u — y.
Then (x, y) € Tand Ax = u — y, which yields (x, u) € A + T, thatis A + T's closed.
Now suppose 4 + T is closed, x, — x, y, - y. By (3.4) u, » some u and Ax, —
—u — y. Then(x,u)e 4 + Tand Ax = u — y since 4 + Tand A are both closed.
Thus xe D(T) = D(A + T) and y € Tx since u = Ax + z where (x,z)e T and z
is unique. Therefore T'is closed.

Proposition 3.3. Let A, Te s(X,Y), D(T) = D(A) such that (3.3) is satisfied with
b < 1. Then S = A + Tis closable if and only if T is. In this case D(T,) = D(S,).
In particular, S is closed if and only if T is.

Proof. From (3.3) we have for all x, y € D(T)

(35) —alx =y + (1= B) |7x = Tv] = 5% - Sy =
< ax =] +(1+ )15 - 1.

Suppose T is closable, {u,}, {v,} = D(S), u, = x, v, > x, Su, = u, Sv, - v. From
(3.5) Tu, — some y, Tv, — some z and by (3.2) y = z. Again from (3.5) Su, — Sv, —
— u — v = 0 and so by (3.2) S is closable. Now suppose S is closable, {u,}, {v,} =
< D(T), u, - x, v, = x, Tu, - u, Tv, - v. By (3.5) Su, — some y, Sv, - some z.
Since S is closable, (3.2) gives y = z. Again by (3.5) Tu, — Tv, = 0. Then u = v
and so Tis closable by (3.2). Let T be closable and let u'e D(T,). There exists {u,} <
< D(T) such that u, - u and {Tu,} is Cauchy. By (3.5) {Su,} is Cauchy. Hence
ue D(S,) and D(T,) = D(S,). The reverse inclusion is proven similarly. Finally, if T
is closed, it is closable; hence S is closable and we have D(S) = D(T) = D(T,) =
= D(S,). This shows that S is closed. The converse is proven similarly.
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4. RELATIVE BOUNDEDNESS CONDITIONS

Definition 4.1. T e m(X,Y) is called demiclosed (respectively, weakly closed) if
and only if {x,} = D(T), x, - x € X (respectively, x, *— x € X), y, € Tx,, y, "> y €
€Y, imply xe D(T) and y € Tx.

It is immediate that T weakly closed implies T demiclosed implies T closed. The
converse, however, is not true in general, as may be seen by the following examples.

Example 4.1. Let X = Y = 1%(R), let D(A) consist of all sequences {x,,} € 1*(R)
such that at least one x,, = 0 and

(4.1) if ko =min{k:x, =0} then x;21/j for 1<j<k,.

Define A{x,,} = {8,4,}- To see that A is closed let {x,} = D(4), x, > x, Ax, > ).
Then there exists n, such that Ax, = y for all n = n,. Then for all n = n,, x, has
its first zero component at some place k,. Since x, — X, x has a zero component at k,
and (4.1) assures that it is the first one. Then x € D(4) and Ax = y. But 4 is not
demiclosed. Define u, = {1,1/2,...,1/(n — 1),0,1/(n + 1), ...}. Then u, e D(A),
u, > u ={1,1/2,1/3,...}, Au,”— 0, but u ¢ D(A).

Example 4.2. Let X = Y = 1*(R), let e, = {5,,}, let D(4) = {e,:n =1,2,...},
and define Ae, = e,. If {x,} = D(4), x, - x, Ax,¥— y, then x, = x for all but
finitely many n. Then x € D(4) and Ax = y. Hence A is demiclosed. But {e,} = D(4),
e,”— 0, Ae,”— 0, and 0 ¢ D(A). Thus A is not weakly closed.

We observe that if A € 1(X,Y) then A closed implies A weakly closed by virtue of
the fact that every strongly closed subspace of X x Y'is necessarily closed in the weak
topology (see [7], Theorem 2.9.2, p. 36). The next proposition, which is proved analo-
gously to Proposition 3.1, asserts the stability of demiclosedness and weakly closedness
under continuous perturbations.

Proposition 4.1. Let Aes(X,Y), Te m(X,Y) such that D(T) = D(A). If A is
demicontinuous (that is, x,, x € D(A), x, —» x implies Ax,"¥— Ax) and D(A) is
closed, then A + Tis demiclosed if and only if Tis. If A is weakly continuous (that
is, x,, x € D(A), x, - x implies Ax, ¥— Ax) and D(A) is weakly closed, then A + T
is weakly closed if and only if T is.

Again, as in Section 3, we want to relax the strong assumption that the perturbing
operator be continuous. We also want to weaken the relative Lipschitz condition.
This gives rise to

Definition 4.2. Let A € s(X,Y), Te m(X, Y) such that D(T) = D(A4). A is relatively
bounded with respect to T, or T-bounded, if and only if there exist constants a, b = 0
such that

(4.2) |Ax|| < a|x| + b|Tx| forall xe D(T).
The infimum of all possible constants b in (4.2) is called the T-bound of A.
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Proposition 4.2. Let Y be reflexive, Aes(X,Y), Tes(X,Y), D(T) = D(A), and
let A be demiclosed (respectively, weakly closed) and T-bounded with T-bound < 1.
Then A + T is demiclosed (respectively, weakly closed) if and only if Tis.

Proof. The proof is analogous to that of Proposition 3.2. One uses the following
nequalities obtained from (4.2):

(4.3) —alx] + (= B) |y] = Ju] = alx] + (1 +b) [y

where xe D(4 + T) = D(T), ue(A + T)x, u = Ax + y, y € Tx. One also uses
the fact that in reflexive spaces bounded sequences have weakly convergent sub-
sequences (see [17], Theorem 1, p. 126) and in any Banach space weakly convergent
sequences are norm bounded (see [9], p. 137).

As in the “closed” case every A € m(X,Y) has a demiclosed (respectively, weakly
closed) extension in m(X, Y), namely, A, (respectively, A4,,) where G(A,) (respectively,
G(A,,)) is the closure of G(4) in X x Y, (respectively, X,, x Y,,). If one tries to define
demiclosable or weakly closable operators in S(X, Y), that is, ones with demiclosed
or weakly closed extensions, the following difficulty is encountered: contrary to the
“closed” case it is this time not possible to just ‘“‘close the graph” in X x Y,, or
X,, x Y,. The reason is that X,, and Y,, do not necessarily satisfy the axiom of first
countability. In order to retain the definition of a demiclosed operator in terms of
sequences we arrive at the problem of finding useful criteria of demiclosability and
weakly closability:

(4.4) Aes(X,Y) andif {x},{y,} = D(4), x,- x,
Yo x, Ax,¥-y, Ay,"—z, then y =1z.
(4.5) Aes(X,Y) andif {x},{y,} = D(4), x,"-x,

o x, Ax,"->y, Ay,"—z, then y=z.

It is easy to see that if 4 € s(X,Y) has a demiclosed (respectively, weakly closed)
extension in s(X, Y), then A satisfies (4.4) (respectively, (4.5)). We do not know if the
converse holds, but we can prove the following proposition.

Proposition 4.3. Let A es(X,Y) satisfy (4.4) and let A map bounded sequences
into bounded sequences. Let Y* be separable. Then A has a demiclosed extension A
in s(X,Y).

Proof. Let D(4) = {x € X: there exists {x,} = D(A4), y €Y such that x, - x and
Ax, " y}. Define Ax = y and by (4.4) the definition is independent of {x,}. It is
obvious that A extends A. Let {f,} = Y* be dense. Let {u,} = D(4), u, - u,
Au, ¥~ v. We have to show that u € D(4) and Au = v. Let {u,(m)} = D(A) such
that lim,, , u,(m) = u, and Au,(m)*— Au, = v, as m — oo. Fix f; and choose n,
such that

lt,, — u| <1 and |fi(v.,) — f:(v)] < 1.
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Choose p; such that

”um(pl) - uml! <1 and Ifl(Aum(pl) ~_fl(um)| <1.

In general, for each k choose n such that
[t — u]| < 1]k, |fivn) = filo)] < 1[k for 1 <i<k.
Choose p, such that
lun(pe) = wn ]| < 1k, |fi(Aun(pi)) = fivn)] < 1[k

for 1 £ i < k. It is apparent that lim, ., u, (p;) = u and since {u, (p;)} is bounded,
so is {Au,,(p,)}. For arbitrary i we have f,(4u,,(p,)) — f{v). By the denseness of {f;}
we obtain Au, (p,) "— v (see [9], Lemma 1.31, p. 137) and the proof is complete.

We observe that the operator A is clearly the smallest demiclosed extension of A.
The proof of the following proposition is analogous to the one above.

Proposition 4.4. Let A € s(X, Y) satisfy (4.5) and let D(A) and R(A) be bounded.
Let X* and Y* be separable. Then A has a weakly closed extension A in s(X, Y).

Proposition 4.5. Let A, Tes(X,Y), D(T) = D(A), let A and T satisfy (4.4), let T
map bounded sequences into bounded sequences, and let A be T-bounded with
T-bound < 1. Let Y be reflexive and Y* separable. Then S = A + T has a smallest
demiclosed extension S in s(X,Y). In this case D(S) = D(T). In particular, T is
demiclosed if and only if S is.

Proof. The proof is similar to Proposition 3.3. One uses the facts that weakly
convergent sequences are norm bounded and in reflexive spaces bounded sequences
have weakly convergent subsequences. From (4.2) one obtains that S satisfies (4.4)
and maps bounded sequences into bounded sequences. Hence, by Proposition 4.3,
S has a smallest demiclosed extension S in s(X, Y). If x € D(T), there exists {x,} =
< D(T) such that x, —» x and Tx, “— Tx. By (4.2) {Sx,} is bounded and thus has
a weakly convergent subsequence. Hence, x € D(f) The reverse inclusion is proven
similarly. If T is demiclosed, D(S) = D(T) = D(T) = D(S) and S is demiclosed,
and conversely. ,

The proof of the following proposition is analogous to the one above.

Proposition 4.6. Let A, Te s(X,Y), D(T) = D(A), let A and T satisfy (4.5), let
D(T) and R(T) be bounded, and let A be T-bounded with T-bound < 1. Let Y be
reflexive and X* and Y* separable. Then S = A + T has a smallest weakly closed
extension S in s(X,Y). In this case D(g) = D(T). In particular, T is weakly closed
if and only if S is.
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5. RESOLVENT, SPECTRUM, AND LIPSCHITZ INVERTIBILITY

Definition 5.1. Let A € m(X, X). We define the scalar 1 to be in the resolvent of 4,
denoted by ¢(4), provided (AI — A)~! exists, D(AI — A)™") = X, and (AI — A)"'e
elip (X, X). The complement of g(A) is called the spectrum of A and is denoted
by o(A).

Before investigating the resolvent and spectrum of nonlinear operators we first
need to consider Lipschitz invertibility and its stability under perturbation. The
following proposition is well known but we prove it here for the sake of completeness.
(This result, and, indeed, a thorough discussion of spaces of Lipschitz operators may
be found in Chapter 2 of [12].)

Proposition 5.1. Let A elip (X, X), D(4) = X and let |I — 4| < 1. Then A™"
exists, D(A™') = X, A™' elip (X, X), and
(s.) A = 10— | = 4).
Proof. Define for all x, y e X, A(y) = (I — A) y + x. Then
4.0) - A 51— Ay - =

and so by the contraction mapping principle has precisely one fixed point z,, that is,
A (z,) = z, or Az, = x. This shows that 4 is surjective and the uniqueness of z,
implies that A4 is injective. Hence, A™" exists and D(4™') = X. Furthermore, for
all x, ye X
471x = 475 = 22— 5] = 4,6 - Az -
=0 -z ==z, + x =y = |1 = A[[47x = a7y] + [x -y
which yields (5.1).

The next proposition is analogous to the linear case (see [9], p. 196).

Proposition 5.2. Let A € s(X, X), Te m(X, X) such that T™" exists in lip (X, X),
and D(T™') = X. Suppose D(T) = D(A) and (3.3) is satisfied with a|T™'| + b < 1.
Then S™' = (A + T)™" exists in lip (X, X), D(S™') = X, and

(52 5 5 [0 = 7] - b).
Proof. First, observe that S = (I + AT ') T. From (3.3) we obtain for x, y € X,
JAT 'x — AT 'y| € a|T7'x = T™'y| + b|TT 'x — TT 'y £
<@+ B -l
By Proposition 5.1 (I + AT~*)™! exists in lip (X, X) with domain X and satisfies
(53) (I + AT™H)7Y = 1)1 — |[AT™Y)).

The conclusions now follow.
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Proposition 5.3. Let A e m(X, Y). The following are true:

(5.4) o(A) is open;

(5.5) (A — A)~'x is continuous as a function from ¢(A) to X for each fixed
xeX;

(5.6) if Aeo(A) and (Al — A)™' is Fréchet differentiable at some x € X, then
(AI — A)~* x is differentiable in some neighborhood of A.

Proof. To establish (5.4) let A€ g(A4) and observe that for any p, (ul — A4) =
= +(u—A)@A — A7) — A4). Let B,=1I+ (u—2)(A —A)~". For p
such that |u — 4| < 1/|(AI — 4)™!|, B,! exists in lip (X, X) with domain X by
virtue of Proposition 5.1. For these , (x, y) € (W — A) if and only if (v, x) e (AI —
— A)™' B, " and thus p € ¢(4). From (5.1) we also obtain

(a1 — A)~*] < (A1 = A)7HJ(1 = |u = 2|1 = 4)7]).
To establish (5.5) observe that for u sufficiently close to 4,
1 — At x = (ut — A x| = [ = A x = G - A) B8] <
< |1 — )7 B Bux — B x| <
S| = A7 [Bax = x[[(1 = | = A |1 = A7) =
<@ = )7 p = A @ = A7 x| = [r = AR = A7)

Finally, (5.5) is due to J. NEUBERGER and a proof can be found in [15].

It is well known that if A € lip (X, X), D(4) = X, then A € g(A) provided || > |4]
and a proof of this fact may be found in [11], p. 144, [16], p. 39, or [13], p. 211
(actually, this also follows from Proposition 5.2). The authors do not know if in this
case the spectrum of A is nonempty (where the space X is over a complex field).
Our notion of spectrum agrees with R. Ka¢urovskil [8] and E. ZARANTONELLO
[18], [19]. Another notion of spectrum is investigated by S. BURYSEK in [2] and
a localization of the spectrum is developed by L. MAy in [13]. In [15] J. Neuberger
defines A to be in the resolvent of 4 provided (I — 4)™! exists with domain X
and (AI — A)~! is Fréchet differentiable at every » € X (where X is complex). He
then establishes the existence of a point in the complement of the resolvent of A4
provided A is locally Lipschitz in some neighborhood of 0. This differentiability
requirement will not be satisfied in general, as may be seen by the following example.

Example 5.1. Let A es(R, R) where Ax = x if x <2 and Ax =2 if x > 2.
Then, for 4 % [0, 1],(Al — 4)"'x = x[(A — 1)ifx < 2(1 — 1)and (U — 4A)" ' x =
= (x +2)/A if x = 2(1 — 1). For x = 2 one sees that (4 — 4)™! x is not di-
ferentiable in A at 4 = 2. Also (AI — 4)™! is not continuous as a function from g(4)
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to the Banach space lip, (X, X) consisting of all Telip (X, X) with D(T) = X,
TO = 0. and norm given by (2.7), as may be seen by

(@I =A™ — (2 + 1/n)I — A)"")2 -
— (@ =AY = (@ + U= AT+ 2n)] =
=@ = DJ(n + D] 2~ @ +2/n)|,
which implies that |2 — A)™' — ((2 + 1/n)I — A)™'| = }foralln = 2.
Example 5.2. Let 4 e m(R, R) where Ax = 0if x < 0, 40 = [ -1, 0], and Ax =
= —1if x > 0. Then A € g(4) provided that A > 0.
Proposition 5.4. Let A€s(X,X), Te m(X, X) such that D(T) < D(A). Suppose
A€ o(T) and (3.3) is satisfied where
(5.7 (@a+ b)) | =T)""|+b<1.
Then e o(A + T) and
(58) |- (4+ 7)Y = | = 1)1 = (a + |2 b) [( = T)7'| = b).

Proof. Since (Al — (4 + T)) = (I — A(AI — T)™") (AI — T), it suffices to show
that (I — A(AI — T)™*)™* exists in lip (X, X) with domain X. We observe that for
all xeX, A(AI — T)™* x — xe T(AI — T)™" x and thus for all x, y e X,

|AGT = 7)™ x — (1 = )7 y] <
Sa|M—=T)'x = @A - T)'y| +b|T(M = T)"'x — T(I = T)"' y| £
< (al(r = 7)) + [ BlGT = 7)1+ B) [x = o]

Then (5.7) and Proposition 5.1 yield the desired result.
We note that in the case Te s(X, X), (5.7) can be replaced by

(5.9) al(AI = T)™'| + b|T(AI — T)™Y| < 1
and (5.8) can be replaced by
(5.10) (A1 — (4 + T) ! =
< |1 = 7))t = a|(a — T)7*| = b|T(AI = T)7Y)).
Proposition 5.5. Suppose Aem(X,X), peg(d) and (uI — A)™' is compact
(weakly compact). Then (AI — A)™" is compact (weakly compact) for all A € g(A).

Proof. For Aeo(4) we have (ul — 4) = (I + (p — A)(AI — A)~Y) (AI — A),
which implies (AI — A)™* = (uI — A)™* (I + (u — A) (AI — A)™") (this “nonlinear
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resolvent formula” may be found in [5], Lemma 1.2). The conclusion follows since
the composition of a Lipschitz operator and a compact (weakly compact) operator
is compact (weakly compact).

Proposition 5.6. Suppose the hypothesis of Proposition 5.4 and in addition sup-
pose that (AI — T)™' is compact (weakly compact). Then (I — (A + T))™" is
compact (weakly compact).

Proof. The conclusion follows as in the proof of Proposition 5.5 from the identity
MU—-—A+T)'=0M —-T)"'(I — AAl — T)"")"" established in the proof of
Proposition 5.4.

6. CONTINUITY AND BIFURCATION OF THE SPECTRUM

In what follows we shall let Y be a Banach space with norm | |, Ta closed operator
in 1(Y,Y), and X the Banach space D(T) with norm |||x||] = a|x| + b|Tx],
x€X = D(T), where a, b are some fixed positive constants. We let I, denote the
operator in b 1(X, Y) given by Iyx = x for all xe X.

Definition 6.1. Let A € m(X,Y). We say the scalar A is in the point spectrum of A
if and only if there exists a nonzero x € D(A4) such that 0 € (AI, — A) x. In this case
we call A an eigenvalue of A and x an eigenvector of A.

Proposition 6.1. Let X and Y be as above. Suppose that D is an open convex subset
of X and let A e s(X,Y) such that D = D(A). If A has a bounded Fréchet derivative
on D, that is, there exists some constant ¢ such that |A'(x)| < ¢ for all x € D, then A
satisfies

(6.1) |4x — Ay| < ac|x — y|| + be|Tx — Ty| forall x,yeD.

Proof. By Corollary 5.4.1 of [14], p. 176, A satisfies a Lipschitz condition on D,
that is, there exists some positive constant ¢ such that

(6.2) [Ax — Ay|| < c|]x - y|| forall x,yeD.

Then (6.1) follows immediately.

Proposition 6.2. Let X and Y be as above. Suppose that D is an open subset of X,
Aes(X,Y), D = D(A), and A is continuously Fréchet differentiable on D. Let
Xo € D and let Ay be a scalar such that (A1 — A) xo = 0. If (AIo — A'(x0)) ' €
eb 1(Y, X), then there exists a neighborhood U, of Ay such that for every neigh-
borhood U of Ay, contained in U,, there exists a unique continuous mapping x
of U into X such that x(Ay) = x, and for all . € U and x(X) € D, (A, — A) x(1) = 0.
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Proof. Define F(4, x) = (Al, — A) x where F has domain R x D (or C x D).
Then F is continuously Fréchet differentiable on its domain, F(4y, xo) = 0, and
F,(Ag, Xo) = Aol — A'(x,) is a linear homeomorphism of X onto Y. By the implicit
function theorem (see [6], p. 270) the conclusions follow.

Definition 6.2. Following KRASNOSELSKH [11], p. 149, we define the point spectrum
of A to be continuous provided it contains an interval. (In the case of Proposition
6.2, if x, # 0, then the point spectrum of A4 is continuous.)

Proposition 6.3. Let X and Y be as above. Let Aes(X,Y) such that A is defined
on some neighbourhod of 0, A0 = 0, and A is Fréchet differentiable at 0. Suppose
Ao =% Ois a scalar such that (I, — 2,A’(0))™" € b 1Y, X). Then there exists a neigh-
borhood U about ), and a neighborhood V about 0 in X such that if AeU, xe€V,
and (I, — 24) x = 0, then x = 0.

Proof. Let Ax — A0 = Ax = A'(0) x + w(x) where |w(x)|/||x]| = 0 as ||x| —
— 0. Let V' be a neighbourhood of 0 in X and let U be a neighborhood of 4, such that
if xeVand A€ U then

(6.3) W) = Ix[1/310 = 204°©) " 4],
and
(64) |4 = Ao| < 31 = 204°(0)" [ |4(0)] -

Suppose x €V, Ae U, and (I, — 14) x = 0. From (6.3) and (6.4) we have

[x[l = 100 = 204°©@)™" (o — 204'(0) x[| =
S |(To — 40A4°(0)) 7| |24x — 2,A4'(0) x| =
= |(To = 204'(O) [ (4 — 40) 4°(0) x + 2 w(x)| = 2[|x]|/3

and the proof is complete.

Proposition 6.3, which is modeled after Lemma 2.1 of [11], p. 192, says that the
eigenvectors of A with small norms can correspond only to eigenvalues of A which
are close to scalars 4, such that (I, — 2,4'(0))"' ¢ b 1(Y, X). Following [11],
p- 181, we make the following definition.

Definition 6.3. Let X and Y be as above. A scalar 1, % 0 is called a bifurcation
point of the point spectrum of 4 € m(X, Y) provided that for all ¢, § > 0 there exists
a scalar A such that |1 — 4| < & and there exists some x =% 0 such that x € D(4),
0e(l, — A4) x, and ||x|| < 6. (In the case of Proposition 6,3, if 4, is a bifurcation
point of the point spectrum of A, then (I, — 2,4'(0))™* ¢ b 1(Y, X)).

We conclude with two examples to which Propositions 6.1, 6.2, and 6.3 can be
applied.
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Example 6.1. Let Y = Co([0, 1]; R), the Banach space of continuous real-valued
functions on [0, 1] which are 0 at 0 and with supremum norm. Let Tx = x', D(T) =
={xeY:x eY}, let [][xm = |%]| + | Tx|, and let F : R - R such that F is con-
tinuously differentiable and F(0) = 0. Define Ax = F(x) + x’ with D(4) =
= D(T). A is Fréchet differentiable at each x € X, since for all he X, A'(x) h =
= F'(x)h + k" and ||A'(x) h|| < ¢|h|| + | Th| for some constant ¢ depending on x.
Also A’ is continuous from X to b 1(X, Y), since

J(4(x) = ) bl < [FGx) = FO)] -] -

We will establish that for all x,e€X and Ao€R, (dly — A'(x0))™ " €b 1(Y, X).
It suffices to show that (4], — A'(x,)) is closed, injective, and onto by virtue of the
closed graph theorem (see [9], Theorem 5.20, p. 166). Obviously (AoI, — A'(xo)) is
closed since it is continuous and everywhere defined. Moreover, if geY and p =
= F'(xo) — A9, then h’ + ph = g has the unique solution h € X given by

i) = ox0 (= [0 85) ["exp [ s 85) ) v,

We observe that A does not have a continuous spectrum nor does A have any bifur-
cation points, since (I, — 4y4) x, = 0 implies x, = 0.

Example 6.2. Let Y, T, and N m be as in Example 6.1. Define Ax = xx" with
D(A) = X = D(T). A is Fréchet differentiable at each x € X, since for each he X,

(x) h=xh'" + x'h, A(x + h) — A(x) — A'(x) h = w(x, h) = hh', |w(x, h)”/“\hm <

< Il WA+ ] 0 as 1] 0, and [4GY A  [=] - [ ] Also
is continuous form X to b 1(X, Y), since

|G = A bl = [l = - [

Let A, be any scalar and let x, € X be defined by x,(s) = A¢s. Then (AgI, — A) xo = 0
and (Al — A'(x)) h = g is equivalent to —Aosh'(s) = g(s). If 4, = O then oI, —
— A'(xo) = 0 and thus not onto. If 4, % 0 then A,I, — A'(x,) is also not onto (since
for g(s) = /s, h(s) = (—1/4) [§ g(u)/u du and h ¢ X). Thus for any choice for Ao,
(Aly — A'(x,))~ " does not exist in b 1(Y, X). Notice that x(s) = As is an eigenvector
of A whose norm can be made arbitrarily small. Thus there does not exist a unique
solution of (HO — A) x = 0 in any neighbourhood about i, = 0, xo = 0. Also 4
has no bifurcation points, since if (I, — A94) xo = 0, Ay + 0, then either x, = 0
or xo(s) = s/4,. This demonstrates that the converse of Proposition 6.3 is not true.

Addendum. The authors have recently learned that (5.4) and (5.5) of Proposition
5.3 were proven by G. DAPRATO “Some d’applications non linéaires et solutions
globales d’équations quasi-linéaires dans des espaces de Banach”, Boll. U. M. L. 4,
No. 2 (1969), 229 —240.
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