374 research outputs found
Coexisting Pulses in a Model for Binary-Mixture Convection
We address the striking coexistence of localized waves (`pulses') of
different lengths which was observed in recent experiments and full numerical
simulations of binary-mixture convection. Using a set of extended
Ginzburg-Landau equations, we show that this multiplicity finds a natural
explanation in terms of the competition of two distinct, physical localization
mechanisms; one arises from dispersion and the other from a concentration mode.
This competition is absent in the standard Ginzburg-Landau equation. It may
also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
Point-to-origin experiments in VR revealed novel qualitative errors in visual path integration
Even in state-of-the-art virtual reality (VR) setups, participants often feel lost when navigating through virtual environments. In psychological experiments, such disorientation is often compensated for by extensive training and performance feedback. The current study investigated participants' sense of direction by means of a rapid point-to-origin task without any training or performance feedback. This allowed us to study participants' intuitive spatial orientation processes in VR while minimizing the influence of higher cognitive abilities and compensatory strategies. From an applied perspective, such a paradigm could be employed for evaluating the effectiveness and usability of a given VR setup for enabling natural and unencumbered spatial orientation even for first-time users, which is important for tasks such as architecture walk-throughs, evacuation scenario training, or driving/flight simulators
Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?
Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a
non-monotonic dispersion relation. The effect of a parametric driving on such
waves is studied within suitable coupled Ginzburg-Landau equations. Due to the
non-monotonicity the neutral curve for the excitation of standing waves can
have up to three minima. The stability of the waves with respect to long-wave
perturbations is determined a phase-diffusion equation. It shows that the
band of stable wave numbers can split up into two or three sub-bands. The
resulting competition between the wave numbers corresponding to the respective
sub-bands leads quite naturally to patterns consisting of multiple domains of
standing waves which differ in their wave number. The coarsening dynamics of
such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to
PR
Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection
Recent experiments on convection in binary mixtures have shown that the
interaction between localized waves (pulses) can be repulsive as well as {\it
attractive} and depends strongly on the relative {\it orientation} of the
pulses. It is demonstrated that the concentration mode, which is characteristic
of the extended Ginzburg-Landau equations introduced recently, allows a natural
understanding of that result. Within the standard complex Ginzburg-Landau
equation this would not be possible.Comment: 7 pages revtex with 3 postscript figures (uuencoded
Visually induced linear vection is enhanced by small physical accelerations
Wong & Frost (1981) showed that the onset latency of visually induced self-rotation illusions (circular vection) can be reduced by concomitant small physical motions (jerks). Here, we tested whether (a) such facilitation also applies for translations, and (b) whether the strength of the jerk (degree of visuo-vestibular cue conflict) matters. 14 naïve observers rated onset, intensity, and convincingness of forward linear vection induced by photorealistic visual stimuli of a street of houses presented on a projection screen (FOV: 75°×58°). For 2/3 of the trials, brief physical forward accelerations (jerks applied using a Stewart motion platform) accompanied the visual motion onset. Adding jerks enhanced vection significantly; Onset latency was reduced by 50, convincingness and intensity ratings increased by more than 60. Effect size was independent of visual acceleration (1.2 and 12m/s^2) and jerk size (about 0.8 and 1.6m/s^2 at participants head for 1 and 3cm displacement, respectively), and showed no interactions. Thus, quantitative matching between the visual and physical acceleration profiles might not be as critical as often believed as long as they match qualitatively and are temporally synchronized. These findings could be employed for improving the convincingness and effectiveness of low-cost simulators without the need for expensive, large motion platforms
Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry
The effect of temporal modulation on traveling waves in the flows in two
distinct systems of rotating cylinders, both with broken azimuthal symmetry,
has been investigated. It is shown that by modulating the control parameter at
twice the critical frequency one can excite phase-locked standing waves and
standing-wave-like states which are not allowed when the system is rotationally
symmetric. We also show how previous theoretical results can be extended to
handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from
http://www.esam.nwu.edu/riecke/lit/lit.htm
Influence of Auditory Cues on the visually-induced Self-Motion Illusion (Circular Vection) in Virtual Reality
This study investigated whether the visually induced selfmotion illusion (“circular vection”) can be enhanced by adding a matching auditory cue (the sound of a fountain that is also visible in the visual stimulus). Twenty observers viewed rotating photorealistic pictures of a market place projected onto a curved projection screen (FOV: 54°x45°). Three conditions were randomized in a repeated measures within-subject design: No sound, mono sound, and spatialized sound using a generic head-related transfer function (HRTF). Adding mono sound increased convincingness ratings marginally, but did not affect any of the other measures of vection or presence. Spatializing the fountain sound, however, improved vection (convincingness and vection buildup time) and presence ratings significantly. Note that facilitation was found even though the visual stimulus was of high quality and realism, and known to be a powerful vection-inducing stimulus. Thus, HRTF-based auralization using headphones can be employed to improve visual VR simulations both in terms of self-motion perception and overall presence
Automotive Stirling engine development program
This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented
Automotive Stirling engine development program
The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg
Sources and sinks separating domains of left- and right-traveling waves: Experiment versus amplitude equations
In many pattern forming systems that exhibit traveling waves, sources and
sinks occur which separate patches of oppositely traveling waves. We show that
simple qualitative features of their dynamics can be compared to predictions
from coupled amplitude equations. In heated wire convection experiments, we
find a discrepancy between the observed multiplicity of sources and theoretical
predictions. The expression for the observed motion of sinks is incompatible
with any amplitude equation description.Comment: 4 pages, RevTeX, 3 figur
- …