281 research outputs found
Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines
An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs
Fully Abstract Translations Between Functional Languages
We examine the problem of finding fully abstract translations between programming languages, i.e., translations that preserve code equivalence and nonequivalence. We present three examples of fully abstract translations: one from call-by-value to lazy PCF, one from call-by name to call-by-value PCF, and one from lazy to call-by-value PCF. The translations yield upper and lower bounds on decision procedures for proving equivalences of code. We finally define a notion of functional translation that captures the essence of the proofs of full abstraction, and show that some languages cannot be translated into others
Statman\u27s 1-Section Theorem
Statman\u27s 1-Section Theorem [17] is an important but little-known result in the model theory of the simply-typed λ-calculus. The λ-Section Theorem states a necessary and sufficient condition on models of the simply-typed λ-calculus for determining whether βη-equational reasoning is complete for proving equations that hold in a model. We review the statement of the theorem, give a detailed proof, and discuss its significance
Privacy via subsumption
We describe an object calculus allowing object extension and structural subtyping. Each object has a “dictionary ” to mediate the connection between names and components. This extra indirection yields the first object calculus combining both object extension and full width subtyping in a type-safe manner. If class inheritance is modeled with object extension, private fields and methods can be achieved directly by scoping restrictions: private fields or methods are those hidden by subsumption. We prove that the type system is sound, discuss a variant allowing covariant self types, and give some examples of the expressiveness of the calculus. C ○ 2002 Elsevier Scienc
Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?
Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a
non-monotonic dispersion relation. The effect of a parametric driving on such
waves is studied within suitable coupled Ginzburg-Landau equations. Due to the
non-monotonicity the neutral curve for the excitation of standing waves can
have up to three minima. The stability of the waves with respect to long-wave
perturbations is determined a phase-diffusion equation. It shows that the
band of stable wave numbers can split up into two or three sub-bands. The
resulting competition between the wave numbers corresponding to the respective
sub-bands leads quite naturally to patterns consisting of multiple domains of
standing waves which differ in their wave number. The coarsening dynamics of
such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to
PR
Automotive Stirling engine development program
This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented
Automotive Stirling engine development program
The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg
Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry
The effect of temporal modulation on traveling waves in the flows in two
distinct systems of rotating cylinders, both with broken azimuthal symmetry,
has been investigated. It is shown that by modulating the control parameter at
twice the critical frequency one can excite phase-locked standing waves and
standing-wave-like states which are not allowed when the system is rotationally
symmetric. We also show how previous theoretical results can be extended to
handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from
http://www.esam.nwu.edu/riecke/lit/lit.htm
Automotive Stirling Engine Development Program
Development test activities on Mod I engines directed toward evaluating technologies for potential inclusion in the Mod II engine are summarized. Activities covered include: test of a 12-tube combustion gas recirculation combustor; manufacture and flow-distribution test of a two-manifold annular heater head; piston rod/piston base joint; single-solid piston rings; and a digital air/fuel concept. Also summarized are results of a formal assessment of candidate technologies for the Mod II engine, and preliminary design work for the Mod II. The overall program philosophy weight is outlined, and data and test results are presented
A Non-Equilibrium Defect-Unbinding Transition: Defect Trajectories and Loop Statistics
In a Ginzburg-Landau model for parametrically driven waves a transition
between a state of ordered and one of disordered spatio-temporal defect chaos
is found. To characterize the two different chaotic states and to get insight
into the break-down of the order, the trajectories of the defects are tracked
in detail. Since the defects are always created and annihilated in pairs the
trajectories form loops in space time. The probability distribution functions
for the size of the loops and the number of defects involved in them undergo a
transition from exponential decay in the ordered regime to a power-law decay in
the disordered regime. These power laws are also found in a simple lattice
model of randomly created defect pairs that diffuse and annihilate upon
collision.Comment: 4 pages 5 figure
- …