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Fully Abstract Translations between Functional Languages 

Jon G. Riecke* 

September 16, 1991 

Abstract 

We examine the problem of finding fully abstract translations between programming lan- 
guages, i .e . ,  translations that preserve code equivalence and nonequivalence. We present three 
examples of fully abstract translations: one from call-by-value to lazy PCF, one from call-by- 
name to call-by-value PCF, and one from lazy to call-by-value PCF. The translations yield upper 
and lower bounds on decision procedures for proving equivalences of code. We finally define a 
notion of "functional translation" that captures the essence of the proofs of full abstraction, and 
show that some languages cannot be translated into others. 

1 Introduction 

There are many ways to  compare the expressive power of programming languages. For instance, 
for two strongly-typed languages A and B, we might say that language B is more expressive if 
it can type-check more expressions. Another criterion might be the constructs provided by the 
programming languages: language A is more expressive than language B if language A can define 
all of the operators of language B. (This idea of "definable operators" is explored in [7].) This 
paper explores a third criterion, related to the idea of definable operators: whether a language can 
be translated into another. Here we will be interested in transforming whole programs instead of 
focusing on a handful of operators. 

In general, a t ranslat ion is syntactically-defined, meaning-preserving map from a source lan- 
guage to  a target language. A compiler is a familiar example of a translation. A compiler is 
syntactically-driven, generating target code based on the parse tree of the source code, and compiled 
code (when interpreted) produces precisely the same results as the source code (when interpreted). 
This latter property, which captures the notion of compiler correctness, is crucial, since otherwise 
a "conlpiler" could be any program that generates code in the target language. 

It is useful to  formalize this correctness criterion. First we pick a set of observations,  which are 
the observable outcomes of computation. For example, the set 0 = {"evaluates t o  n" : n E N) is 
a natural notion of observing the computation of arithmetic expressions. We will call a translation 
adequate if it preserves observations [ll]: 

*Author's current address: Department of Computer and Information Science, University of Pennsylvania, 
Philadelphia, PA 19104. T h e  bulk of this work was done a t  the MIT Laboratory for Computer Science. T h e  
author was supported by a n  NSF Graduate Fellowship, NSF Grant  Nos. 8511190-DCR and 8819761-CCR, and ONR 
grant Nos. NOOO14-83-K-012 and N00014-88-I<-0557. 
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Definit ion 1.1 Suppose the observations of language L1 and L2 are 0. A translation M H 

from L1 to  L2 is adequa te  if M yields an observation in (3 iff @ yields the same observation. 

Adequacy is a minimal connection between source and translated code. Most reasonable transla- 
tions are adequate. 

There are other properties which may hold for a given translation, e.g., the translation may 
be time- or space-bounded. Another semantic criterion requires that a translation preserve equiv- 
alences of arbitrary pieces of code (e .g. ,  code in which functions or procedures have not yet been 
declared). Two pieces of code are said to  be equivalent iff they cannot be distinguished when placed 
into any program context. More specifically, 

Definition 1.2 A term M observationally approximates  a term N with respect to  observa- 
tions 0 and language L (written M ~f N) if, for any L-context C[.], C[M] yields an observation 
implies that C[N] yields the same observation. Two terms M and N are observationally con- 
gruent  (written M E: N) if both M 52 N and N cg M. 

Observational approximation and congruence are important ideas in programming. For example, 
observational congruence captures the notion of correct optimizations: replacing M by a faster but 
observationally congruent term N will not change the final answer of the program. A translation 
will be called fully abstract if i t  preserves observational approximations (cf. [12, 22, 381): 

Definition 1.3 Let O be the observations of L1 and La. A translation P H from L1 to  L2 is 
inequationally fully abs t r ac t  if 

Likewise, a translation P ++ P is equationally fully abs t rac t  if M -z N t=, M =% fi. 
Fully abstract translations are important for a number of reasons. First, fully abstract trans- 

lations can be used to  reduce questions about code equivdence or nonequivalence in one language 
to  another. For example, if there is an effective means of proving equivalences (observational con- 
gruences) in language B and there is an effective, fully abstract translation from language A to 
language B, then there is an effective proof procedure for observational congruences in language A: 
first translate terms and then reason about them. Moreover, if the translation is time-bounded, we 
may be able to  deduce lower and upper bounds on decision procedures for proving equivalences. 
Second, the concept of fully abstract translations yields a notion of expressiveness: language A 
is "no more expressive7' than B if there is a fully abstract translation from A to B. This idea is 
not new; Mitchell [13, 151 uses the idea of compositional, fully abstract translations t o  compare 
languages. Others have examined similar ideas. Felleisen's notion of expressiveness [7] based on 
"definable operators" is a restricted version of fully abstract translations (where some of the opera- 
tors of a language are not translated). More recently, Shapiro [31] uses a definition of homomorphic 
translation to  derive a theory of expressiveness of concurrent languages. 

This paper explores fully abstract translations between functional languages. To keep the study 
focused, we restrict attention to finding translations between various versions of the simply-typed, 
functional language PCF. A full definition of the syntax of PCF appears in Section 2, along with the 
operational and denotational semantics of three particular versions of the language, call-by-name 
PCF [9, 22, 301, call-by-value PCF [9, 25, 33, 341, and lazy PCF [5, 6, 91. 



Section 3 begins with a description of an adequate translation from call-by-value t o  lazy PCF. 
It is then shown that the translation is not fully abstract. Section 3 then repairs the translation 
using syntactically-definable retractions, and proves that the translation is fully abstract. Sections 4 
and 5 define other fully abstract translations from call-by-name to call-by-value PCF, and from 
lazy to  call-by-value PCF. These translations also rely upon definable retractions, and the proofs of 
full abstraction use the same basic technique as  the call-by-value to lazy case. Section 6 discusses 
some complexity-theoretic corollaries to  the full abstraction theorems. 

Other effective, fully abstract translations based on godelnumberings of terms can be given. 
Section 7 defines the notion of a functional t ranslat ion that eliminates such godelnumbering 
translations from consideration. We then show that lazy and call-by-value PCF cannot be translated 
into call-by-name PCF via a functional translation. This is evidence that the notion of a functional 
translation leads to  a nontrivial expressiveness theory. Section 8 concludes with a discussion of 
some open problems. 

2 PCF and its Interpretation 

This section briefly reviews the operational and denotational semantics of call-by-name, call-by- 
value, and lazy PCF. The reader familiar with these languages may care to skim this section and 
refer t o  it when necessary. 

2.1 Syntax of PCF 

PCF (Programming language for Computable Functions) is a simply-typed language which has 
some simple constructs for computing with integers. The set of PCF-terms is the least set closed 
under the formation rules of Table 1.l A term is a value if it is a numeral or A-abstraction; values 
are denoted by V. 

Most of the operations of PCF behave in the intuitive way. For instance, the sequential condi- 
tional (cond M N P )  reduces its first argument, returning the value of the second if the first halts 
a t  0 and the value of the third if the first halts at a numeral greater than 0. The parallel conditional 
(pcond M N P ) ,  where M, N ,  and P have type L ,  differs from (cond M N P )  operationally in one 
respect: if N and P reduce to  the same numeral, (pcond M N P) reduces to  that numeral even if 
M diverges. Parallel conditional is necessary for making the standard denotational models fully 
abstract. 

PCF is the syntax of call-by-name and call-by-value PCF. For lazy PCF, we add the formation 
rule 

M : a  N : r  
Convergence- tes ting 

(conv M N) : T 

and call the resultant set of terms LPCF. Informally, (conv M N)  returns the value of N if the 
interpretation of M halts, and otherwise diverges. 

We adopt many of the standard notational conventions of the A-calculus [2 ] .  For instance, terms 
are denoted by the letters M ,  N, P, Q, S ,  and T. Parentheses may be dropped from applications 
under the assumption that application associates to the left, i .e . ,  (M N P) is short for ((M N )  P). 

'There are  alternative ways of building a syntax of PCF. Most notably, the syntax can be defined using constants 
instead of term constructors 1221. Using constants for conditionals, however, leads t o  a rather arcane operational 
semantics of call-by-value PCF (cf. [35]). 
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Variables xf : a ,  where i E N 

M : u  M : ( )  N : r  
A-abstraction Application 

(Ax:. M )  : ( r  -. v )  ( M N ) : v  

M : a  
Numerals 0,1,2, . . .  : L Recursion 

px;. M : u 

M : L  M  : L  
Successor Predecessor 

(succ M )  : L (pred M) : L 

M : L  N : o  P : a  M : L  N : L  P : L  
Conditional Parallel conditional 

(cond M  N P) : a  (pcond M  N  P) :  L 

Table 1: Syntactic formation rules for PCF 

We will also drop types from variables whenever the types are unimportant or can be deduced from 
the context, and use the letters u, V ,  W, x, y, and z to  denote variables. The usual definitions of 
free and bound variables apply here, and terms are identified up to renaming of bound variables 
[2]. Finally, syntactic substitution is written M[x := N ] ,  where the substitution renames bound 
variables to  avoid capturing the free variables of N  [2] .  

2.2 Operational and Denotational Semantics of PCF 

The operational semantics of PCF can be defined by a deductive semantics2 A deductive 
semantics defines a binary relation & on terms by rules based on the structure of terms; we write 
M lj V (read "M halts at value V") when there is a proof tree with result M l,l V, whose nodes 
are instances of the rules defining the relation 4. It is important to  understand the substantial 
difference between deductive semantics and rewrite or "structured operational semantics" [2, 231. 
In deductive semantics, terms are written to values in one big step, whereas in rewrite semantics, 
the single-step relation may need to be used multiple times in order to rewrite a term to a value. 

Each language has its own lj relation, called &,, &,, and for call-by-name, call-by-value, 
and lazy PCF respectively. The rules defining these relations include the rules of Table Rules 
specific to  the three languages appear in Ta.ble 3. 

The denotational models for the three languages-called N ,  V, and C-are environment models 
whose the underlying spaces are Scott domains [ l o ] .  For every type a ,  we assign domains Nu,  V", 
and C". The three denotational models share much of the same structure, e.g., the poset NL 
(natural numbers with I ,  where I n for any natural number n and n k for any distinct 

'This form of semantics has been given the title "natural semantics" by Gilles Kahn and others; i t  has also been 
called a n  "observation calculus" by Bloom [4]. We call this form of semantics a "deductive semanticsn t o  emphasize 
the resemblance of the interpretation of terms t o  proof trees. 

3The expert reader may recall that  Plotkin's interpreter for call-by-name PCF diverges on (pred 0) [22], whereas 
our interpreter returns 0. This  is a minor design change that  makes the denotational semantics of t h e  three languages 
easier to  use. 



V $V,  V a value 
M U . 0  N U . V  

(cond M N P )  l j V  

M U n  M U ( n t 1 )  P U V  
(succ M )  $ ( n  t 1) (cond M N P )  4) V 

M 4 (n  + 1) M u 0  N u k  
(pred M )  6 n (pcond M N P )  4 K 

M-UO M U ( n + l )  P $ k  
(pcond M N P )  IJ k 

M [ x  := px. M ]  V N k  P u k  
(PX- h l )  u v (pcond M N P )  4 k 

Table 2: Deductive semantics rules for applying constants and reducing conditionals. 

Table 3: Deductive semantics rules specific to  the three languages. 

Call-by-name 

Lazy 

Call- by-value 

M 4, Ax. M' M 1 [ x  := N ]  4, V 
( M  N )  Un V 

M J J I  Ax. M r  M'[x := N ]  V M $1 V r  N U I  V 
( M  N )  $1 V (conv M N )  U l  V 

M .IIu Ax. M' N 4, V r  M 1 [ z  := V'] &, V 
( M  N )  4, V 
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U X ~ D P  = P ( X )  

[ ~ D P  = n 
[pxn. Mjp  = U f n ( l ) ,  where f(d) = [M]p[x  c dl 

n>O 

if [ M l p  = I 
[succ M ] p  = 

[ M ] p  + 1 otherwise { l 
if [ M ] p  = I 

[pred M ] p  = 0 if [ M ] p  = 0 
[ M ] p  - 1 otherwise l 

{ 
I if [[MJIp= I 

[cond M N P ] p  = [Nnp if [ M j p  = 0 
[P]p  otherwise 

[Nnp if [ M ] p  = 0 

[pcond M N P]p  = [PIP if [ M ] ~ P  > 0 
[PIP if [NIP  = UPIP 
I otherwise 

Table 4: Equations common to the denotational semantics of call-by-name, lazy, and call-by-value 
PCF. Here, l denotes the least element in the appropriate domain. Abusing notation, we write n 
for both the numeral denoting n and the natural number n itself. 

natural numbers n and k) is the domain assigned to  JV, VL, and LL. The semantic clauses in 
Table 4 are shared among the three models as well; clauses specific to the three languages appear 
in Table 5. The only differences between the three models are the domains assigned to  the functional 
types, and the corresponding semantic clauses for interpreting A-abstractions and applications. 

2.3 Call-by-name PCF 

The call-by-name interpreter requires one more rule beyond those appearing in Table 2. This is 
the rule for evaluating applications of A-abstractions to arguments, where the arguments are passed 
call-by-name, i .e . ,  without evaluation. This rule appears in Table 3. For call-by-name PCF, we 
observe only numerals [22], and hence the observational approximation relation is 

Definition 2.1 M La,, N if for any PCF-context C[-1, C [ M ]  l,l, k implies C [ N ]  4, k. 

For example, let R = p f"'. f; then (Ax. R x )  C,,,, R. 
The denotational model of call-by-name PCF is built out of continuous functions. The functional 

spaces are defined inductively by N7"' = [N7 iC Nu] where [ A  -+, B] is the Scott domain of 
continuous functions from domain A to  domain B ordered pointwise [lo]. The missing semantic 



Table 5: Extra semantic clauses for the three languages. 

Call- by-name 

Lazy 

Call- by- value 

clauses appear in Table 5. For the purposes of this paper, the most important use of the denotational 
semantics will be to  prove operational facts using the following theorem [22, 281: 

N [ X x .  MIp  = f ,  where f ( d )  = NIM]lp[x  H dl 

NW Nnp = ( N U M I P I  ( N N I P )  

C([Xx. M ] p  = lift(g), where g(d) = C([M]lp[x H d] 

L6M Nil P = (LIIMllp) *I ( L [ N I p )  

if L [ M ] p  = I 
L[conv M NIP  = 

L [ N ] p  otherwise i ' 
V[Xx. Mnp = lift(strict(g)), where g(d)  = V[Ml]p[x I-+ d] 

V I M  N I P  = ( v w n p )  OW ( V ~ N I P )  

Theorem 2.2 Adequacy and inequational full abstraction for N :  

Adequacy: For any closed term M of type L ,  M  4, k  zfS N [ M ]  = N [ k ] .  

Inequational full abstraction: M En,,, N iff for all p, h l [M]lp  C NIN]lp .  

The notions of adequacy and full abstraction for models obviously parallels the notions of adequacy 
and full abstraction for translations. 

2.3.1 Lazy PCF 

Like the call-by-name interpreter, the lazy interpreter also passes arguments by-name. Neverthe- 
less, there is one significant difference between the two languages: lazy PCF includes extra terms 
for convergence-testing. These extra terms are interpreted by the rule given in Table 3. In lazy 
PCF we observe numerals, so 

Definition 2.3 M ~ l , , y  N if for any LPCF-context C[.], C[M] k  implies C[N] lJl k .  

For instance, (Ax.  P) El,,, R: the context (conv [.] 0 )  distinguishes these terms, since (conv 52 0 )  hl 
but (conv (Ax. P) 0 )  0. 

It is important to notice that one may observe termination and obtain the same observational 
approximation relation. Suppose, for example, M El,,, N by the context C[.] and C [ M ]  4, m and 
C[N] $1 n with m < n. Then the context D[.] = (cond (predm C[.]) 0  R), where 

(predm P )  = .. (pred (pred . . . (pred d P ) ) )  
" 

m times 
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forces D[M] to converge but D[N] to diverge. Both numeral and termination observations will 
be important below, even though only one kind of observation is essential in defining the lazy 
observational congruence relation. 

The denotational model reflects the termination properties of lazy PCF using the domain- 
theoretic operation of lifting. Lifting is used at functional type to  distinguish between divergent 
terms, which will mean I, and convergent terms, which will have denotations in the lifted part of 
the space. Formally, for any poset D with a least element, Dl is the poset consisting of D and a new 
element I, with I ordered below every element of D. Importantly, there are well-defined injection 
and projection functions lift : D -. Dl and drop : DL -. D,  where drop(lift(d)) = d and lift(d) # I 
for all d E D. The function spaces for C are then defined inductively by Lr'" = [LT __tC ,Cull. 
The semantic clauses for interpreting terms in this structure appear in Tables 4 and 5, where 
d a l e  = drop(d)(e) is used to simplify the notation. (Note that a1 is continuous in both arguments.) 
This model matches the operational semantics of lazy PCF [5]. 

Theorem 2.4 Adequacy and inequational full abstraction for L: 

Adequacy: For any closed term M of type L,  M J,ll b iff CUM] = Cuk]. Moreover, for any 
closed term M ,  M iffCfM] # 1 .  

Inequational full abstraction: M &,,, N ifl for all environments p, C[IM]lp 5 CI[N]p. 

2.3.2 Call-by-value PCF 

The call-by-value version of PCF differs little from call-by-name or lazy PCF. The main difference 
between the languages arises in the parameter-passing mechanism implemented by the interpreter: 
in call-by-value PCF, all arguments are reduced to values before being substituted for formal pa- 
rameters. The formal rule appears in Table 3. The observations of call-by-value PCF are numerals, 
SO as before, 

Definition 2.5 M CVa1 N if for any PCF-context C[.], C[M] 4, k implies C[N] .I), k. 

One example of a call-by-value observational congruence is (Ax. x) r,,l (Ax. Xy. x y). Suppose both 
terms are placed in a context C[.]. If x is ever instantiated by a term N during the evaluation 
of C[Ax. X I ,  that term N must be a value. Since values always halt, N =,,, (Ay. N y). The 
observational congruence now follows from this fact. 

The denotational model of call-by-value PCF is built out of strict continuous functions, i.e., 
those continuous functions f for which f ( I )  = I. Let [ A  -+, B] denote the Scott domain of strict, 
continuous functions from A to  B, ordered pointwise [lo]. The functional spaces of V are defined 
inductively by Vr" = [VT is VVII, and the language is interpreted using the semantic clauses of 
Tables 4 and 5, where d a, e = drop(d)(e) and where 

I i f e = 1  
strict (g)(e) = 

g ( e )  otherwise. 

(Note that a, is continuous in both arguments.) This model fits the call-by-value operational 
semantics [9, 32, 341. 

Theorem 2.6 Adequacy and inequational full abstraction for V: 



Adequacy: For any closed term M of type L ,  M 4, k iff V I M ]  = k. Moreover, for any closed 
term M ,  M &, iff V [ M ]  # I. 

Inequational full abstraction: Ail C,,, N ifl for all environments p,  V [ M ] p  C V [ N I p .  

3 Translation from Call-by-Value to Lazy PCF 

This section thoroughly explores one translation from call-by-value to  lazy PCF. First we define a 
basic, albeit naive translation. This translation will satisfy the adequacy property but not the full 
abstraction property. The translation is then repaired so that i t  becomes fully abstract. The proofs 
of adequacy and full abstraction are developed in detail in this section, since the basic techniques 
employed, right down to the statements of lemmas, may be carried over for the other translations 
considered in Sections 4 and 5. 

3.1 The basic translation 

In [20], Ong defines a translation from call-by-value to lazy PCF. The idea behind this translation is 
familiar and simple. Since the call-by-value interpreter forces evaluation of operands in applications, 
the translation converts call-by-value functions to  lazy functions which check their arguments for 
convergence. The translation is defined by induction on the structure of terms:4 

--- 
(succ M )  = (succM) (cond M N P )  = (cond M N P )  
(pred M )  = (xed B) (pcond M  N P) = ipcond B T %) 

3.2 Adequacy 

Importantly, this translation satisfies the adequacy property, i.e., 

Theorem 3.1 For any closed term PCF-term M ,  

M 4, n ii4fMl,ll n; and 

Most proofs of adequacy for translations are based on connections between the interpreters of the 
language [20, 211. Ong, for instance, proves the adequacy of his translation by setting up a tight 
correspondence between steps in the interpreters for his two languages. But a technically simpler, 
semantic proof is also possible for this translation, using the models V  and L and the fact that 
these models are adequate. This is the approach we will take. 

The proof relies upon showing that there are elements of the lazy model (corresponding to  strict 
functions) that represent elements of the call-by-value model. The following inductively-defined 

'There are a few technical differences between this translation and Ong's: Ong's translation tests for convergence 
in the application case rather than in the abstraction case, and works with untyped languages without conditionals, 
arithmetic, or recursion. Nevertheless, the spirit of the translations is the same, and both are adequate but not fully 
abstract. 
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relation, an instance of a logical relation [14, 371, states this relationship between elements of the 
two models: 

Definition 3.2 Define the relations Ra C V a  x La by induction on types as follows: 

1. d  RL e iff d = e; and 

2. f R"" g iff (f # I ++ g # I), and for any d Ra e ,  (f ow d )  R7 (g 01 e) .  

This definition should be compared to  the definitions of logical relations in [G, 16, 251. There is 
an operational justification for this relation. For instance, recall that divergent terms mean I in 
both V and L.  Thus, R relates the meanings of all divergent terms in call-by-value and lazy PCF. 

We begin with a technical lemma on the relations that will be needed to handle recursions. 

Lemma 3.3 Suppose d; R" e;, and (U d;)  and (U e;)  exist. Then (IJ d;) R" (U e i ) .  

Proof: By induction on types. The basis is straightforward since R1 is the identity relation. Now 
consider the induction case, and let d = (IJ d; )  and e = (U e;) .  It  is not hard to  see that d  = I iff 
e = I. Now suppose d' R" el. By hypothesis, (d;  o, dl) R' (e; a1 el), SO by induction 

U ( d ;  ow dl) R7 U (e;  el e') 

By the continuity of 0, and 01, ((U d;) a, d') R' ( ( U  e;) 01 e') and so ( d  a, d') R' ( e  ow el) as desired. 

This property which is sometimes called "inclusivity" or "directed completeness," since R preserves 
least upper bounds of directed sets. 

The key lemma needed for the proof of Theorem 3.1-an analog of the Fundamental Theorem 
of Logical Relations [14,37]-shows that the meanings of all call-by-value terms are related to their 
lazy translates. To relate the meanings of open terms (which will be encountered inductively), we 
need a condition on environments: a V-environment p and an C-environment p' are compatible if 
for any variable xu, p(xa) Ra p'(xU). Then 

Lemma 3.4 For any PCF-term M and compatible p and p', V[M]lp  Ra C[Wp1. 

Proof: By induction on the structure of terms. In the basis, M is either a variable or numeral. If 
M is a variable xu,  then by hypothesis 

If M is a numeral n,  then V [ n ] p  = n R' n = LIZ]lpl. 
There are seven cases in the induction step; we consider application, A-abstraction, and recur- 

sion here and leave the remaining cases dealing with successor, predecessor, and the condition- 
als to  the reader. First, suppose M  = ( M I  M 2 ) .  By induction, for any compatible p and p', 
VIMil]p R L [ ~ ] l p l .  Thus, by the definition of R, 



as desired. 
Second, suppose M  = Axa. N .  Let d  = V [ M ] p  and e  = c [ T ~ ? ] ~ ' .  Obviously d  # I and e  # I, 

since both are the meanings of A-abstractions. Now we consider their meanings when applied. 
Suppose dt Ra et. If d' = I, then e' = l and thus d  a, d' = I R7 I = e  a[ e' since e  checks its 
argument for convergence. If, on the other hand, dt # I ,  then et # l and so 

where the second line follows from the induction hypothesis and the fact that p[x H d'] and 
pl[x H el] are compatible. Thus, d  R e  as desired. 

Finally, suppose M = pxa. N .  Let f ( d )  = V [ N ] p [ x  I+ dl and g(e) = CI[N]~'[X H el. First, it 
follows easily from the definition of the relations that fO(l) = I Ra I = gO(I).  By the induction 
hypothesis, 

f " ~ )  = V [ N ] p [ x  I+ I ]  Ra L[T]~'[X H I ]  = gl(l) 

since p[x H I] and pt[x H I] are compatible environments. Thus, using a simple induction on n, 
i t  is easy to  see that f n ( l )  Rg  g n ( l )  for all n. Since { f n ( l )  : n 2 0) and { g n ( l )  : n 2 0) are 
both chains, their lub's exist and hence by Lemma 3.3 we may conclude 

as desired. H 

Proof of Theorem 3.1: Suppose, for instance, that M  is a closed PCF-term and M 4,. Then 
by the adequacy theorem for V ,  V [ M ]  # I .  Since it follows from Lemma 3.4 that V I M ]  Ra C([M], 
it must be the case that L [ M ]  # I. Thus, by the adequacy theorem for L, M JJr. The converse 
and the case when M  is of type L follow along similar lines. 

3.3 Failure of full abstraction 

Theorem 3.1, together with the fact that the translation is compositional-i.e., the translation of 
a term is defined by the translation of its components-implies one direction of full abstraction. 

- 
Corollary 3.5 For any PCF-terms M  and N ,  N implies M  Eva[ N .  

Proof: Suppose M  gVal N .  Then there is a context C[.] in which either 

C [ M ]  lj, and C [ N ]  fi,; or 

C [ M ]  lj, m and C [ N ]  JJ, n, where m and n are distinct numerals. 

Suppose the former of these cases holds (the Iatter case can be argued similarly). By Theorem 3.1, - -- 
i t  follows that C [ M ]  $1 and C [ N ]  h.~. Because the translation is compositional, C [ M ]  = C [ M ] ,  - -- 
where "holes" in contexts are translated to "holes." Similarly, C [ N ]  = C [ N ] .  Thus, this context - - 
C[.] distinguishes M and E, so % El,,, N .  
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The converse of Corollary 3.5 fails, and hence the translation is not fully abstract. A simple example 
demonstrates this fact. Consider the PCF-terms All = AxML. x and M2 = X X ~ + ~ .  XyL. (x y ) .  One 
may verify that MI =,,I M2 using the model V ,  but the terms 

- 
MI = XxLiL,convx x - 
M2 = AxL-". conv z (XyL. conv y (x y ) )  

are not lazy observationally congruent: the context C[.] = [.] (Xz. 3 )  R (where R is any divergent 
term of type L )  causes the first term to return 3 and the second to diverge under the lazy interpreter. 

What is the problem with the translation? The problem lies in the translation of variables. For 
instance, the variable z in can be instantiated with any LPCF-term, including (Ax. 3) which is 
not strict in its argument. In other words, contains variables that do not range over the target 
of the translation. The term K, on the other hand, forces x to diverge if its argument y diverges. 
If there were some uniform way to force a term of functional type to be strict, we could guarantee 
that the variable x in would range over only strict functions. 

There are two possible recourses for obtaining full abstraction. On the one hand, one could 
change the definition of El,,, so that contexts with strict functions are the only ones allowed. This - 
would probably be enough to guarantee that M CUal N i f f  % El,,, N. On the other hand, one 
could change the translation so that it becomes fully abstract. We shall take the second course, 
since we want to  see if i t  is possible to  obtain a fully abstract translation; the other course is left 
open, although it has been considered elsewhere for other translations [39]. 

3.4 Full abstraction 

Forcing terms of functional type to  be strict is the key idea in repairing the translation. Define 
terms Su of type (a -+ a) as follows: 

SL = AxL. x 

ST'" = AxTiV. conv x (XyT. conv y (6" (x (ST y ) ) ) )  

These S's are "strictifying" functions. The function ST'" makes its first argument x strict by 
checking the second argument y for convergence, then passing the strict version of y to x and 
"strictifying" the result. 

A first important observation is that "strictifying" twice is the same as "strictifying" once. 
Abusing notation, we write SU for L[Su]. 

Lemma 3.6 So is a retraction, i.e., 6" 0 1  (SU 0 1  e )  = So 0 1  e.  

Proof: By induction on types. The basis is easy to  verify, since S ' i s  the identity function. Now 
consider the induction step, where a = ( r  + v). There are two cases: either e = I or e # 1 .  
If e = I, then S 01 e = I = S 01 (6 0 1  e).  If e # I ,  note that neither (6 01 e )  nor (6 el (6 el e ) )  
is I, since both are the meanings of X-abstractions. Thus, both elements are in the lifted part of 
the domain LT'", or in other words, both (S 0 1  e )  and (6 01 (6 01 e ) )  are lifted functions. Thus, 
to show these elements are equivalent, it is enough to show that they agree when applied to  any 
element in LT via el (recall that d 01 d' = drop(d)(df)).  So suppose e' E L'. If e' = I, then 



( 6  a1 e )  a1 e' = I = (6 a1 (6 a1 e ) )  a [  e'. If el # I, then 

(bT-', a1 e l  e ) )  a1 el = Su a1 ((ST-*' e )  a1 (ST a1 e l ) )  
= 6'' a1 (dU a1 ( e  a1 (ST a [  (dT a1 e l ) ) ) )  
= 6" a1 ( e  a1 (ST a1 e ' ) )  
= (dT+" a1 e )  m i  el 

where the first, second, and fourth lines follow from the definition of dT'", and the third line follows 
by the induction hypothesis. Thus, since neither (6 a1 e )  nor (6 el (6 a1 e ) )  is 1, the elements (6 a1 e )  
and (6 al (S a1 e ) )  are the same lifted function. H 

The functions 6" are the essential ingredient to  repairing the translation. We modify the 
translation so that variables are translated via the clause 

with all other clauses given as before. From now on, let M denote the translation of a term M 
under the modified translation. This translation is adequate and fully abstract. 

Theorem 3.7 The new translation satisfies the following properties: 

1. Adequacy: For any closed PCF-term M ,  M  4 ,  iff M ! J l .  Moreover, i f  M  is of base type, then 
M 4, n i f f  M u l  n. 

- 
2. Inequational Full Abstraction: For any A1 and N ,  M LUa1 N ifS % L1,,, N .  

The proof of adequacy of the new translation follows along the same lines as the proof of Theo- 
rem 3.1: the only modification necessary is the variable case of Lemma 3.4, which may easily be 
seen to  follow from 

Lemma 3.8 If d Ru e,  then d R" (6" a1 e ) .  

Proof: (Sketch) By induction on types. 

The (+) direction of full abstraction now follows from the adequacy result, using the same argument 
given in the proof of Corollary 3.5. 

In contrast, the proof of the (+) direction of full abstraction requires some new ideas, although 
as before, the proof relies on the models V  and C. By the full abstraction theorems for ,C (Theo- 
rem 2.4) and for V (Theorem 2.6), it is sufficient to show that V I M ]  C V [ N ]  implies c[%] C ~[z]. 
Suppose M and N  are closed terms and hl = CUB] and h2 = C[xl], but hl h2. Thus, there is 
some way of applying hl and h2 (using a , )  to other elements ei to obtain some distinction. Our 
goal is to  show that 

Theorem 3.9 For any M of type 0 and C-environment p, c[?]~ = (6" ~[? i? ]~ ) .  
which will imply that ei can be assumed to be in the range of 6, and that 

Theorem 3.10 For any e E C" i n  the range of S" (i.e., e = (5" a1 e') for some e'), there is a 
d E V" such that d Ra e. That is, the relation R" is surjective on the range of 6". 
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Intuitively, then, hl and h2 can be distinguished by legal representations of call-by-value elements. 
It will follow that V [ M ]  and V [ N ]  are distinguishable. 

We begin by proving Theorem 3.9, for which we need the following lemma. 

Lemma 3.11 For any PCF term M ,  variuble x of type a ,  and L-environment p, 

Proof: By induction on the structure of M, using the fact that x is translated to ( S o  x). 

Proof of Theorem 3.9: By induction on the structure of the term M. In the basis, M is either 
a variable x or a numeral k .  If M = x ,  then 

where the second equality follows from Lemma 3.6. If M  = b ,  then 

as desired. There are seven cases in the induction step; we consider three cases here and leave the 
others to  the reader. 

1. M  = ( P  Q ) .  Then by the induction hypothesis, 

If either .L[P]p or L [ a p  is I ,  then L[Ti?]p = I = (6" m i  L [ z ] l p ) .  Otherwise, 

where the first line holds by the definjtion of ST'" and the last line holds by induction. 

2. M  = (AxT.  P ) ,  where a = (T  + v). Let hl = L[Ax. c o n v x ~ ] p  and h2 = (6" m i  hl). Since 
hl # I, it follows from the definitions of 6 that h2 # I .  We therefore just need to  show 
that hl and h2 are equivalent when applied using m i .  So suppose d E L T .  If d = I, then 
hl m i  d = I = h2 m i  d .  If d # I ,  then 

h2 m i  d = (6" a 1  (hl  m i  ( S T  a 1  d))) 
= (6" a [  ~ [ [ P ] l p [ x  - (6' m ~  d ) ] )  

= (6" m i  LI[P]p[x - d l )  

= L [ T ] p [ x  H dl = hl m i  d 

where the first line follows from the definition of S o ,  the third line follows by Lemma 3.11, 
and the fourth line follows by induction. 



3. A4 = (pxu. P). Let f(d) = C[FIp[x ++ dl. Note that I = (6" 0 1  I ) .  Also, for any n 2 1, 

where the second line holds by induction. Thus, 

This completes the induction step and hence the proof. 

The main part of the argument is to prove Theorem 3.10. We follow a method due to Friedman 
[8] and Plotkin [24], showing that the relations R" are functional, continuous, and surjective on the 
range of 6. (The additional requirements are just extra hypotheses necessary to prove surjectivity.) 
Define the auxiliary functions a" : Va + La and P" : Cu -. Vu, where 

I i f d = I  
Dr-u(e) = { I i f e = I  

g otherwise 

where f # I and g # I and 

if e' = I { ( , ( 6  e l  e )  otherwise 

g..dl = { .I- 
if d' = I 

p"(e (rr(d')) otherwise 

It is not a t  all clear that these functions are well-defined. For instance, the result of aL"(f) 
may not be in the set C"'" = [NL +, NLI1. The following lemma shows that this cannot happen. 

Lemma 3.12 1. For any d E V0 and e E Lo, (ru(d) E Lo and P U ( e )  E V"; and 

2. au and p" are continuous functions. 

Proof: By induction on types. The basis is not difficult, since VL = LL and cyL and P h r e  the 
identity functions. Now consider the induction case for the type a = (T -+ v): 

1. We will show that f = cru(d) E Lo ; showing that ,Bn(e) E V" is similar and omitted. If d = I, 
then f = I E LT"'. NOW suppose d # I. We need to show that f is a (lifted) continuous 
function from C' to L". Pick any e' E Cr. If e' = I, then f e' = I E C". If e' # I ,  then 

f el e' = av (d  o ,  (pr(Sr e ' ) ) )  E LV 

by induction. Thus, all we need to show is that f is a lifted, continuous function. So 
suppose X C C7 is a directed set. If U X  = I ,  then all elements of X are I and hence 
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f a1 (U X )  = I = U,,, ( f  01 x) .  If U X  # I, then some element in X is not I and hence 

where the second line follows by induction (the continuity of a" and P T )  and the continuity 
of 0, and ST. Thus, f E CT'". 

2. Again, we will only show aT" is continuous, since the proof that p'" is continuous is 
similar. Suppose Y 5 VT'" is directed; our goal is to show that u = aT+"(U Y )  is the same 
lifted continuous function as v = UyEY (aT+"(y)).  Suppose, on the one hand, (U Y) = I; 
then all elements y E Y are equal to I. Thus, u = I = v. Suppose, on the other hand, 
(U Y) + I. Then u # I and v # I. To show u and v are equal as lifted functions, suppose 
e' E LT. If e' = I, then 

If e'# I, then 

= U (aTiy ( y )  el el) 
Y €Y 

where the second line follows from the continuity of a" and mu, and the third line follows from 
the definition of aT'". 

This completes the induction step and hence the proof. 

Theorem 3.10 follows directly from Part (1) of the following lemma. 

Lemma 3.13 For any d E V" and e E LC, 

1. Pu(S" el e )  R" (6" or e) ;  and 

2. If d R" (6" 01 e ) ,  then au(d)  = (So rl e) .  

Proof: By induction on types. In the basis, Part (1) follows immediately since R L  is the identity 
relation on V L  = CL and P L ( S h l  e )  = (6' 01 e ) ,  For Part (2), suppose d RL ( S L  01 e).  By the definition 
of the relation, d = (SL  01 e). Thus, by the definition of a', aL(d)  = d = ( S L  01 e )  as desired. 

Now consider the induction case for type a = (T + v). There are two parts to  verify. 



1. The definition of P"" implies that P T + " ( f )  = I iff f = I. Thus, PT'"(ST'" at e )  = I iff 
(ST+' a, e )  = I. Now suppose (bT'" a1 e )  # I and d' RT el. If dl = I, then el = I and so 

(pT'"(ST'" a1 e ) )  a, d' = I R" I = (ST'" a1 e )  a1 el 

Suppose, on the other hand that d' # I; then el + I. By Lemma 3.8, dl RT ( S T  a1 el).  
Therefore, 

(pT'"(S"" a,  e ) )  a, d' = PU((S"" a1 e )  a1 ( a T ( d ' ) ) )  
= /3y((&T+u a1 e )  a1 ( S T  a1 e l ) )  
= pU(S" a1 ( e  a1 ( S T  a1 ( S T  a1 e l ) ) ) )  
= P"(Sv  a1 ( e  a1 ( S T  a1 e l ) ) )  

RV 6" a1 ( e  a1 ( S T  a1 e l ) )  

Ru (ST'" a1 e )  a[ el 

where the second and fifth lines hold by induction, and the fourth line holds by Lemma 3.6. 

2. Suppose d Ra (So a1 e ) .  If d = I, then a o ( d )  = I = (So a, e ) .  If d # I, then (6"" e )  # I. 
To show that a W v ( d )  = (ST'" a[ e ) ,  we therefore only need to  show that they agree when 
applied using a[. So consider any element el E LT . If e' = I ,  then 

Now suppose e' # I. By induction, ,8'(ST a1 el)  RT ( S T  e l  e') and so 

Therefore, 

aT+"(d)  a1 er = a U ( d  a, PT(S7 a1 e l ) )  

= (ST+" a1 e )  a1 ( S T  a1 el) 

= 6" a1 ( e  a1 (ST a1 ( S T  a1 e l ) ) )  

= SV a1 ( e  a1 (ST a1 e ' ) )  

= (ST+" 01 e )  a1 e' 

where the first line holds by the definition of a"", the second line holds from the fact above 
and the induction hypothesis, and the fourth line holds from Lemma 3.6. 

This completes the induction step and hence the proof. W 

- 
Proof of Theorem 3.7, Part (2),  (+): Suppose %!f gl,,, N. Then by the full abstraction the- 
orem for C, 

LUJfllpl !l L U ~ P '  
for some environment pr. Let hl = L[?JJpl and h2 = ,C[npr.  By the properties of lazy models, 
there is some sequence of arguments e l , .  . . , e k  (possibly the null sequence) such that either 

1. ( h l  el a1 . . . e k )  # I and ( h 2  0 1  e l  0 1  . . . at el ; )  = 1; or 



18 Riecke-Fully Abstract Translations be tween Functional Languages 

2. (hl 01 el . . . 0 1  ek) = m and (h2 01 el el . . . 01 ek) = n, and m and n are different natural 
numbers. 

Let us consider only the first case, since the second case can be proven similarly. By Lemma 3.11, 
we may assume without loss of generality that for all variables xu,  pl(xu) is in the range of So. 
By Theorem 3.9, hl and h2 are in the range of 6, and hence we may also assume without loss of 
generality that ei are in the range of the 6's (since hi = (Su 01 hi) forces its arguments to  be in the 
range of the 6's). By Theorem 3.10, there are elements d; E V with d; R e;, and moreover, there is 
a V-environment p that is compatible with p'. 

We will use these elements d; to  distinguish hi = V[M]p from hi = V[N]p. By the analog of 
Lemma 3.4 for the modified translation, hi R hi. By the definition of the relations, i t  follows that 
(hi r, dl r, . . .a,  dk) # I but (hk r, dl 0 , .  . . o w  dk) = I. Thus, hi hk, which by the full abstraction 
theorem for V implies that M gval N. This completes the proof. 

4 Call-by-name to Call-by-value PCF 

We might take the same kind of approach in translating call-by-name PCF to call-by-value PCF, 
and translate call-by-name A-abstractions to call-by-value A-abstractions. There are, however, 
a few technical obstacles to  overcome, because evaluation of applications is different in the two 
languages. Consider, for instance, the PCF-terms ((Ax. 3) ( p  f. f ) )  and 3. Under call-by-name, 
both terms reduce to 3; under call-by-value, however, the first diverges. 

We therefore need a new idea to  translate call-by-name to call-by-value PCF. We use the stan- 
dard trick of delaying the evaluation of a term; under call-by-value, all A-abstractions terminate, so 
delaying may be accomplished by wrapping a term in a dummy A-abstraction. This guarantees that 
all terms-and hence all operands in applications-terminate, so that the call-by-value interpreter 
never diverges when evaluating an operand. For simplicity, dummy arguments will be of type L, 

although one could use dummy arguments of any type. Terms of type a are therefore translated to 
terms of type a', where 

The full translation from call-by-name to call-by-value appears in Table 6. Again, we need 
retractions yo-which force terms to be constant functions in their first argument-to make the 
translation fully abstract. 

Theorem 4.1 The translation M H 2 from all-by-name to call-by-value P C F  is adequate and 
inequationally fully abstract. That is, 

1. Adequacy: For any closed M of type L ,  M J,tn n ifl(G 3 )  4, n; and 

2. Inequational Full Abstraction: For any M and N,  M Enam, N iff M  ̂ Lva1 $. 

The proof of this theorem uses the same methods as those outlined above: we build a logical relation 
from a fully abstract model of call-by-name PCF to the model V, and show that it is surjective on 
the range of y. The complete proof may be found in [27].  



Table 6: Translation of call-by-name to call-by-value PCF. We always assume that z ' i s  a fresh 
variable not appearing in the term to be translated. 

5 Lazy to Call-by-value PCF 

A 

- 

The same ideas may be adapted to building a translation from lazy to call-by-value PCF. Table 7 
gives such a translation. Here, most of the clauses for terms are identical to the previous translation; 
the only exceptions are the definition of the retractions xu, the clauses for translating variables and 
applications, and the additional clause for translating conv. This translation also turns out to be 
adequate and fully abstract: 

A 

xu = (yo (XzL. xu! z ) )  
A 

b = X z t k  

S U Z M  = ~z\ssucc (G 3) 
p r z ~  = Xzl. pred (G 3 )  - 
Axu. M = XzL. XxU'. Mh 
(AE~N) = ((G3) $1- 

c o n d z  N P = XzC. cond (M 3 )  ( E  3 )  ( p  3 )  

pcond% N P = X z L . p c o n d ( G 3 ) ( i ?  3 ) ( p  3 )  - 
pzu.  M = pxu'.  G 

y1 = .XLf. XzL. x 3 
Y ~ ' ~  = ~ x ( " ~ ) ~ .  Xz" .yT1. ( y V  (XzL. x 3 (y7  y )  2)) 

- 

Theorem 5.1 The translation M H % from lazy to call-by-value PCF is adequate and inequa- 
tionally fully abstract. That is, 

1. Adequacy: For any closed LPCF-term A4, M $I k ifl  (G 3) V, k ,  and M JJl iff (G 3) 4,; 

2. Inequational Full Abstraction: M Elaz, N ifl M^ CVar $. 

Again, the proof uses the same basic technique, constructing a logical relation from the model G 
to  the model V that is surjective on the range of X .  The complete proof may be found in [27]. 

6 Corollaries of Full Abstraction 

There are a number of complexity-theoretic results, regarding the time required to prove observa- 
tional approximations, that can be deduced from the full abstraction theorems. For instance, we 
can deduce a lower bound on the time required to prove call-by-value observational approximations 
of pure terms-those not involving numerals, successor, predecessor, recursion, or conditionals. 
To find this lower bound, first note that call-by-name observational approximations of pure terms 
coincides with ,877-equality (see [ G ,  271 for the complete argument). Thus, since /I?-equality of pure 
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xu  = (xu (XzL. xu' 2)) 
A 

k = Xz\k 
h 

succ M = XzL. succ (M^ 3 )  
p r r ~  = XzL. pred (M^ 3 )  - 
Axu. M = XzL. AX"' .  M^ 
(M-N) = XzL. ((G 3 )  r S )  z 

c o n d z  N P = XzL. cond (2 3 )  ( f i  3 )  ( p  3 )  
p c o n d z  N P = XzL. pcond ( G  3 )  ( f i  3 )  ( F  3 )  - A 

pxu.  M = C ~ x u ' .  M 
conTM N = XzL. (Xw. 5)  (M^ 3 )  

xL = XxL1. XzL. 2 3  
x ~ + ~  = XzL. ( X W .  XYT1.  ( x V  (XzL. x 3  (xT y )  z ) ) )  ( x  3 )  

Table 7: Translation of lazy P C F  to call-by-value PCF. As before, zL is a fresh variable not appearing 
in the term to  be translated. 

terms cannot be solved in elementaay recursive time [36] ,  testing t o  see whether M Enam, N for 
pure M and N cannot be solved in elementary recursive time either.5 Since the translation from 
call-by-name to  call-by-value PCF works in linear time, 

Corollary 6.1 The following question cannot be decided in  elementary recursive time: given two 
pure PCF-terms P and Q ,  is i t  the case that P Enal Q ?  

Proof: Suppose P Lna~ Q can be decided in elementary recursive time. Then one may decide 
whether M Enam, N for pure terms: first translate and check whether M^ EVal f i .  The result of 

A 

this procedure is correct, since M L,,i fi iff M Cna,, N. This would give a procedure that runs 
in elementary recursive time for determining whether M I&,,, N, which is a contradiction. Thus, 
P CVa1 Q cannot be decided in elementary recursive time. . 
This corollary implies that deciding M EUal N requires time beyond that expressed by any fixed, 
finite stack of 2's. 

Along similar lines, one can show that the problem of deciding M 'Cia,, N for pure conv-terms 
(those containing only the construct conv) cannot be decided in elementary recursive time. In 
fact, the decision problems M Cl,,, N for pure conv-terms, and M N for pure terms, are 
equivalent under polynomial-time reducibility: this follows immediately from the fact that there 

5Non-elementary recursive time implies that a problem cannot be decided in time 

for any bounded height of exponents [29] 



are linear time reductions-via the translations-between these two problems. We conjecture the 
following upper bound: 

Conjecture 6.2 The decision problem M L,,1 N for pure M and N can be solved i n  iterated 
exponential time (i.e., within time determined by some stack of 2's, where the height is determined 
by the size of the term). Thus, the problem of deciding M C,,,, N for M and N pure conv-terms 
can also be solved i n  iterated exponential time. 

It is already known that the problem of M II,,,, N for pure M and N can be decided in iterated 
exponential time [29, 361. 

7 Functional Translations 

In the introduction, we argued that fully abstract translations could provide the basis of an ex- 
pressiveness theory. Nevertheless, there are trivial solutions to the problem of finding fully ab- 
stract translations between languages. This section considers such a trivial translation based on 
godelnumbering, and then attempts to build an expressiveness theory by placing conditions on 
translations. 

7.1 Gijdelnumbering translations 

It is easy t o  design a fully abstract tra.nslation between any two programming languages. For 
instance, if the target language contains numerals and all numerals are observationally distinct, 
one could simply translate all terms in an observational congruence class to  a unique numeral 
in the target language. This translation preserves observational congruences and non-congruences. 
Nevertheless, we would not consider it a reasonable translation, since it is not effective. But even the 
condition of effectiveness is not sufficiently strong to rule out unreasonable translations. Consider 
the case of translating lazy PCF into call-by-name PCF. 

Theorem 7.1 There exists an eflective translation M H 2 of lazy to call-by-name PCF that is - - 
equationally fully abstract, i .e . ,  M zl,,, N u M =,,,, N. 

Proof: (Sketch) We translate an LPCF-term M to (I #M),  for some godelnumbering # of LPCF- 
terms. The closed term I : L -+ L -+ L represents a "two-argument interpreter" for lazy PCF written 
in call-by-name PCF, where the first argument is the term to interpret and the second argument 
is a godelnumbered tuple of arguments to M (possibly an empty tuple). It is not hard to  design 
such an interpreter meeting the following requirements: 

1. ( I  # M  (nl, .  . . , n,)) fin if any of n l , .  . . , n ,  is not the godelnumber of a closed term; 

2. ( I  # M  (#Nl, .  . . , #N,)) fin if the lazy term (M Nl . . . N,) is not well-typed; 

3. ( 1  # M  (#NI,.  . . , #Nm)) 4, iff (M NI . .  . N,) 4,; and 

4. ( I  # M  (#Nl,. .. , # N m ) )  4, k iff ( M  N 1 . .  . N,) J,ll k.  

To verify that the translation preserves observational congruences, suppose M N with M 
and N having type (al + . . . -+ a, -+ L). By the proof of the full abstraction theorem for lazy 
PCF (Theorem 2.4), there are terms PI , .  . . , P, such that either 
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1. ( M  PI.. . Pm) GI and ( N  Pi.. . Pm) hl; or 

2. ( M  Pi.. . Pm) 41 k and ( N  P i . .  . P,) kt, where k # kt and m = n. 

By the properties of I, (G (#PI, .  . . , # P,)) has different behavior than (3 (#PI, . . . , #Pm)). 
Thus, $,,,, E.  The converse follows similarly and is omitted. W 

Similar translations based on godelnumbers can be found between almost all universal programming 
languages, i.e., those languages that can represent all partial recursive functions. An expressiveness 
theory based on only full abstraction must therefore identify most languages. 

7.2 Definition of functional translations 

In order to build an interesting expressiveness theory, we must place more stringent conditions 
on translations. There have been other attempts to find suitable conditions on translations. In 
[13, 151, for example, Mitchell examines translations that are compositional and preserve observ- 
able behavior, and is able to prove that there are no compositional translations between certain 
languages. Others, including Felleisen [7] and Shapiro [31] have developed similar definitions based 
on compositionality. 

Unfortunately, not all of the translations in this paper fit the definitions of Mitchell, Felleisen, 
and Shapiro. In particular, two of the translations-the translations from lazy and call-by-name 
to call-by-value PCF-produce terms that do not have the same observable behavior as source 
terms: one must first apply a "dummy" numeral argument to obtain an observable result. Other 
reasonable translations, e.g., continuation-passing style (cps), also require applications at  the end 
of translation in order t o  produce results [21]. Of course, we might extend these definitions so that 
a translation may place a term-generated from a source term in some compositional manner-into 
some uniform context. This would cover the case of translating from call-by-name to call-by-value. 
But this definition would also allow godelnumbering translations, since one could explicitly compute 
the godelnumber of a term in the target language (which can be defined compositionally) and then 
apply the interpreter function I to the result. 

The search for suitably restrictive syntactic conditions seems unclear and complicated. We 
therefore leave the search for syntactic conditions open, and instead look for semantic conditions. 
Since the proofs of full abstraction for all three translations above are similar semantically, we use 
the common structure in seeking suitable conditions on translations. For simplicity, we consider 
translations between a restricted class of functional languages: 

Definition 7.2 A simply-typed functional language L is a set of terms and observations 0 
in which every term is assigned a type in the grammar 

and where the set of terms is closed under application, i.e., ( M  N)  is a term of type v whenever M 
and N  are terms of types (r 4 v) and T respectively. Also, for any terms M : ( a  -4 r) and 
N : (7 + v), there must exist an L-term (N o M) : ( a  -+ v) such that for any L-term P of 
type a ,  ((N o M )  P )  (N ( M  P)). Finally, L must be operationally extensional (cf. [3, 41) 
with respect to  its observational congruence relation, i . e . ,  M =z N iff for all terms PI , .  . . , Pk, 
( M  PI . . . Pk)  yields the same observations as (N Pi . . . Pk). 



When we take the set of terms to be the closed terms, call-by-name, call-by-value, and lazy PCF are 
simply-typed functional languages. In order to obtain operational extensionality for call-by-value 
and lazy PCF, we need to observe both numerals and termination; nevertheless, observing both 
numerals and termination does not change the observational congruence relations for call-by-value 
and lazy PCF. 

It is instructive to  first consider the translation from call-by-value to  lazy PCF. Under this 
translation, lazy versions are "functionally equivalent" to the original call-by-value terms, in the 
sense that translations of terms of type L have the same values as the original terms, and translations 
of functionally-typed terms, when provided with strict arguments, return strict results. This tight 
correspondence between the source and target terms is captured by a logical relation. Logical 
relations will thus play a key role in the definition below. 

Under the other two translations, the connection between source and target terms is not as 
clear: a translated term has a different type than its source term. Nevertheless, using a definable 
projection function 4, we may recover some of the behavior of the source term. At ground type, 
d L  : L' -+ L is the function that applies a term of type L' to a dummy argument (3 in our version 
of the translation) to obtain a numeric result. In fact, this projection function is generic, viz., it 
does not matter which numeral we pick to apply to terms. Similarly, one may define call-by-value 
functions 

4T-" : (7 -4 v)' -+ (7' + ut) 

that apply their argument to a dummy argument to  obtain a function. Indeed, suitably-defined 
projection functions are a key feature of each of the translations: the projections for the translation 
from call-by-value to lazy are simply the identity functions. 

Putting these ideas together, we arrive at the following definition, slightly modified from the 
definition appearing in [26]. To simplify the definition, we use the notation La to denote L-terms 
of type a, and the notation M $0 N (read " M  mutually simulates N") to  signify that M and N 
yield the same observations in 13 when evaluated (M and N may be in different languages). 

Definition 7.3 Let L1 and L2 be simply-typed functional languages with observations 0. Let 
M H be a translation of LT to  L';' (note that this means the translation must work uniformly 
on types). Then the translation is functional if there are La-definable projections 

and relations Ra & Ly x L;' such that 

F1 (M R M). 
F2 R is a logical relation: 

1. M R V  implies M +o (4"); and 

2. M RT'" N implies M +o (d7'" N ) ,  and P R7 Q implies that (M P) R" ( N  a Q ) ,  
where N a Q = ((c$~'" N )  Q). 

- 
F3 Applications are translated uniformly: (M N) -& ( ( 4  MI) fi). 
F4 Projections 4 are generic: For any La-term N in the range of R and any L2-terms Qi of the 

appropriate type, ( 4  N )  =z2 ( N  Q1. .  . Q,). 
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F5 Translated functions convert arguments to the range of R: For any M in the range of RT'" 
and P of type r', there exists a term P' in the range of RT such that ( M  P )  =& (M PI). 

F6 The target sublanguage is operationally extensional: Suppose M and N are in the range of 
Ru, and for all Pi in the range of R ,  

Then M rR N. 

This definition should be compared to the definition of the relations R given in Section 3.2. The 
final clause is necessary t o  achieve full abstraction: intuitively, it says that if two terms in the target 
of the translation are distinguishable operationally, there is a way of distinguishing them by terms 
in the target of the translation. 

We begin by proving that all functional translations are fully abstract. 

Lemma 7.4 Suppose M H MI is a functional translation from Lr to L;' with projections 4'' and 
relations Ru. Suppose further that M Ra P and N Ru Q .  Then M N iff P =g2 Q .  

Proof: (e) Suppose M f N. Then by the operational extensionality of Ll,  there exist terms 
P; with ( M  P I . .  . Pk) Fo ( N  PI . . . Pk).  By Clauses F1 and F2, 

( # ) ( P e g .  . . .  .&)) +, (4 ( Q .  g r .... &)). 

Thus, P f &  Q. 

(+) Suppose P f f j z  Q. Then by Clause F6, there exist Pi in the range of R such that 
( 4  ( P  PI a .. . Pk)) eo ( 4  (Q PI . . . Pk)). Now pick P,! such that P;' R Pi (these must exist). 
By Clause F2, ( M  P i . .  . P i )  $o (N P i . .  . Pk). Thus, M N .  

Theorem 7.5 Let L1 and L2 be simply-typed functional languages. Suppose M H MI is a func- 
tional translation from L1 to L2 with relations R. Then M H M is equationally fully abstract. 

Proof: Follows easily from Lemma 7.4 and the fact that M R G. H 

In order to  be a suitable basis for an expressiveness theory, functional translations should be 
closed under composition. This has an intuitive justification: if language A is no more expressive 
than B ( i .e . ,  there is a functional translation from A to B), and B is no more expressive than C, 
then A should be no more expressive than C. 

Theorem 7.6 Suppose there are functional translations M H M from Ly to L;' and M H $? 
from L; to L;", and O is the set of observations for each of the three languages. Then there is a 

functional tmnslation from L l  to L")". 

Proof: Let R; and 44 be the parameters of the two functional translations. Define 
I I1 

Rp = R$ o Ry Ly X L? ) 

4," = 42" 0 ($2""" 8) : (L')" + L 

- 437- - 
9;""' (4z'""'-"1-"" 4;'") - : ( ( r  + v)')" - (r')" - (v')" 

- 
The reader may check that these relations and terms have the advertised type. Let M  ̂ = M ;  we 
must verify the requirements F1-F6 hold for this composite translation: 



1. M R3 &?: This is obvious, since M R1 % R2 %?. 
2. R3 is a logical relation: There are two requirements to  verify-R3-related terms produce 

the same observable behavior, and applying related terms to related arguments produces 
related results. For the first part, suppose that M R$ P, i.e., there exists an N such that 
M Rr N R;' P. By Clause F2, M $0 N )  and (41 N )  $0 ($2 ( z  @2 P ) )  IR (43 P) ,  
where L *2 Q = ((42 L) Q). Thus, M +o (43 P )  as desired. 

Now suppose a = (7 4 v), and there exists an No such that Mo Ry No 11;' Po. Suppose 
further that MI RT N1 R;' PI. By Clause F2, 

(Mo MI) R1 ((41 No) Nl) Rz ((& .z Po) @2 PI). 

However, by the definition of 43, ((& m2 Po) *2 PI) =& ((43 Po) PI) ,  so by Clause F2 we may 
conclude 

(Mo M1) R1 ((41 No) Nl) R2 ((43 Po) PI). 

Thus, ( M o  MI) R3 (PO m 3  PI),  where (PO m 3  PI)  = ((43 Po) PI), as desired. 

3. ( M  N )  =& ((43 G) 8): To make the notation a bit easier to read, define 3 ( M )  = %f. Then 

where the first line follows from the definition of 43, and the third, fifth, and sixth lines follow 
from Clause F3 of the definition of functional translation. 

4. 43 is generic: Suppose P is in the range of R3. Then there are terms M and N with 
( M  R1 N R2 P). By Clause Fl ,  we know that N R2 &. By Lemma 7.4, P I& fi. Thus, for 
any L3-terms Pi and Q; and L2-terms Sj of the appropriate types, 

where the second line follows from the definition of 43, the third and sixth lines follow from 
Clause F3, and the fourth, fifth, and seventh lines follow from Clause F4. This is now almost 
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in the form we want-except that some of the arguments (namely g )  are in the range of one 
of the translations. So consider any L3-terms S:. By Clause F5, there exists an Sy in the 

0 - range of R2 such that (fi 0 2  S: 0 2  . . . 0 2  S;) ( N  0 2  SY 0 2  . . . 02 S;). Since S,!' is in the - 
range of R2, there exists Sy R2 Sr. Note by Clause F l  and Lemma 7.4, S,!' -f3 Sr. Thus, 
we may assume Sy-and hence S{-are in the range of the translation (3. Therefore, it is 
enough to  consider only those arguments in the range of the translation, so it follows that 
($3 P )  -2, ( P  PI . . . Pm) for any terms Pj of the appropriate type. 

5. Translated functions convert arguments to be in the range of R3: Suppose P is in the range - 
of R3, i .e. ,  (M R1 N R2 P) .  Note that by Lemma 7.4, P =g3 ;i?. Pick any term T such that 
(P 03 T )  is well-typed. By the definition of 43, 

Since (& 0 2  P )  is in the range of R2, by Clause F5 there exists a To in the range of R2 such 
that 

( ( A  0 2  P )  0 2  T )  =g ( ( A  0 2  P )  0 2  To) (2) 

Pick any S R2 To (we know such an S exists since To is in the range of R2). Since S R2 3, 
by Lemma 7.4, 3 =& To. Therefore, 

- - 
(41 0 2  P 02 To) =R (& 0 2  0 2  TO) 

.g (& 0 2 %  o2 3 )  

-f3 F ( ( 4 l M )  S )  

where the last line follows from Clause F3. Now by Clause F5, there is an So in the range of 
R1 such that ((41 2) S )  zg2 ((41 z) So). Pick Q such that Q R1 So; then by Lemma 7.4, - 
Q =z2 So. Thus, 

((41 z )  SO) =g2 ((41 z) 8 )  =f2 (iM) 
where the last observational congruence follows from Clause F3. Thus, since (3 is fully 
abstract by Theorem 7.5, 

Putting together Equations 1-6, we arrive at the fact that 

- - - 
( P  03 T )  =& (& a2 2 0 2  Q) E& (P O3 Q) .  

- 
Since is in the range of R3, we are done. 

6. Operational extensionality: Suppose Mi RI Ni R;' Pi and PO $& PI.  By Lemma 7.4, 
No f z2 Nl and hence Mo f f, M I .  Since L1 is operationally extensional, there exist Qi with 
(Mo Q1. . . Q i )  +o (MI Q1. . . & I ) .  Thus, 



where S a1 S' = S) St). Note that by Clause F2, 

(41 (Ni a)) $0 (42 (K a2 ((Z e2 Pi) a2 6))) -& (43 (pi a3 Q?)) 

In general, 
(91 (Ni '1 Q1 v 

Thus, 
A 

(43 (Po a3 Q? a3 . . . a3 6)) 7% (43 (Pl a3 Q1 a3 - - - a3 6)) 
and Clause F6 now follows from the fact that Q̂ , are in the range of R3. 

This completes the verification of each part and hence the proof. . 
7.3 Distinctions made by functional translations 

The translations of Sections 3 and 5 demonstrate that call-by-value and lazy PCF  are "equivalent" 
under the notion of functional translation: each can indeed be seen to be functional, when the 
observations of the two languages are chosen to be numerals and termination. Call-by-name PCF 
can also be functionally translated into call-by-value-and by the Theorem 7.6, into lazy PCF as 
well-as long as specify what "termination" means in call-by-name PCF. Here, the correct choice 
is to  say that all terms of higher-type terminate under the call-by-name semantics; choosing this 
as our meaning of termination does not change the observational approximation relation Cname, 
even though the call-by-name interpreter given above does not really terminate on all terms of 
higher-type. 

Nevertheless, call-by-name PCF is strictly less expressive (under the notion of functional trans- 
lations) than either call-by-value or lazy PCF. For definiteness, we prove that call-by-name cannot 
be translated to call-by-value. 

Theorem 7.7 There is no functional translation from call-by-value to call-by-name PCF. 

Proof: Suppose M H .%f is a functional translation with projections 4" and relations Ru. Let R1 
and R2 be divergent call-by-value PCF terms of types (L -+ L) and L respectively. Note that 
fil Xx.R2. Thus, by Theorem 7.5, 

- - 
01 f name AX- 02- 

- 
However, by the definition of functional - translation, (4 ((4'" Ax. R2) N)) for any closed N 
diverges. Similarly, (4 ((q5L'L R1) N)) diverges. By Clause F4 of the definition of functional 
translation, - 

(4 ((4"'" AX -  02) N ) )  =name ((~5702) F N 0) 
for any terms Pi and Q;.  Similarly, 

Therefore, since both XXTR~ and 6 diverge when applied to any arguments, both are call-by-name 
observationally congruent to  R. Thus, 

- - 
R1 AX. R2 

This is a contradiction, so there can be no functional translation from call-by-value to  call-by-name 
PCF.. 
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8 Conclusion 

Letting L1 5 L2 denote the proposition that there is a functional translation from L1 to La, and 
L1 N L2 denote L1 5 L2 and L2 5 L1, the main results of the paper may be summarized in 
symbols as follows: 

Call-by-name PCF < Call-by-value PCF N Lazy PCF 

It  seems quite likely that other fully abstract translations exist between other functional languages. 
Indeed, although we have not proven it here, there is a well-structured translation from the untyped 
call-by-value A-calculus to  the untyped lazy A-calculus. This translation uses a fairly natural 
modification of the retractions in the call-by-value to  lazy case. The proof relies on two models: 
the fully abstract model for the untyped lazy A-calculus [I, 19, 201, and the fully abstract model 
for the unt yped call-by-value A-calculus composed of lifted, strict continuous functions (Felleisen 
and Sitaram, personal communication). Instead of logical relations, we use inclusive predicates. 
This example should provide clues for adding general recursive types, since untyped languages are 
essentially languages with one recursive type; it should also provide clues for extending the language 
with sums and products. 

All three of the languages considered here incorporate parallel conditional. Of course, we 
would like sequential fully abstract translations as well, e.g., from sequential call-by-value PCF 
to sequential lazy PCF. We believe our methods will carry over to this problem, albeit carried 
out directly on the language instead of through the use of models. Extending the languages with 
richer type structures or other features, such as those captured by monads [17, 181, would also be 
interesting. 

We have only briefly discussed how the notion of functional translations leads to a, definition of 
expressiveness. Proving other algebraic properties beyond composition for functional translations 
would be a good start. Also, the definition of functional translation may, on further insight, 
be too restrictive. In particular, Clause F4, which posits that the projections functions behave 
generically, seems very restrictive. It may well be that a less restrictive definition would still rule 
out godelnumbering translations. \Ve leave this question open as well. 
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