
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1991

Fully Abstract Translations Between Functional Languages Fully Abstract Translations Between Functional Languages

Jon G. Riecke
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Jon G. Riecke, "Fully Abstract Translations Between Functional Languages", . September 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-64.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/793
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/793
mailto:repository@pobox.upenn.edu

Fully Abstract Translations Between Functional Languages Fully Abstract Translations Between Functional Languages

Abstract Abstract
We examine the problem of finding fully abstract translations between programming languages, i.e.,
translations that preserve code equivalence and nonequivalence. We present three examples of fully
abstract translations: one from call-by-value to lazy PCF, one from call-by name to call-by-value PCF, and
one from lazy to call-by-value PCF. The translations yield upper and lower bounds on decision procedures
for proving equivalences of code. We finally define a notion of "functional translation" that captures the
essence of the proofs of full abstraction, and show that some languages cannot be translated into others.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-64.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/793

https://repository.upenn.edu/cis_reports/793

Fully Abstract Translations Between Functional
Languages

MS-CIS-91-64
LOGIC & COMPUTATION 38

Jon G. Riecke

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

September 1991

Fully Abstract Translations between Functional Languages

Jon G. Riecke*

September 16, 1991

Abstract

We examine the problem of finding fully abstract translations between programming lan-
guages, i .e . , translations that preserve code equivalence and nonequivalence. We present three
examples of fully abstract translations: one from call-by-value to lazy PCF, one from call-by-
name to call-by-value PCF, and one from lazy to call-by-value PCF. The translations yield upper
and lower bounds on decision procedures for proving equivalences of code. We finally define a
notion of "functional translation" that captures the essence of the proofs of full abstraction, and
show that some languages cannot be translated into others.

1 Introduction

There are many ways to compare the expressive power of programming languages. For instance,
for two strongly-typed languages A and B, we might say that language B is more expressive if
it can type-check more expressions. Another criterion might be the constructs provided by the
programming languages: language A is more expressive than language B if language A can define
all of the operators of language B. (This idea of "definable operators" is explored in [7].) This
paper explores a third criterion, related to the idea of definable operators: whether a language can
be translated into another. Here we will be interested in transforming whole programs instead of
focusing on a handful of operators.

In general, a t ranslat ion is syntactically-defined, meaning-preserving map from a source lan-
guage to a target language. A compiler is a familiar example of a translation. A compiler is
syntactically-driven, generating target code based on the parse tree of the source code, and compiled
code (when interpreted) produces precisely the same results as the source code (when interpreted).
This latter property, which captures the notion of compiler correctness, is crucial, since otherwise
a "conlpiler" could be any program that generates code in the target language.

It is useful to formalize this correctness criterion. First we pick a set of observations, which are
the observable outcomes of computation. For example, the set 0 = {"evaluates t o n" : n E N) is
a natural notion of observing the computation of arithmetic expressions. We will call a translation
adequate if it preserves observations [ll]:

*Author's current address: Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104. T h e bulk of this work was done a t the MIT Laboratory for Computer Science. T h e
author was supported by a n NSF Graduate Fellowship, NSF Grant Nos. 8511190-DCR and 8819761-CCR, and ONR
grant Nos. NOOO14-83-K-012 and N00014-88-I<-0557.

2 Riecke-Fully Abstract Translations between Functional Languages

Definit ion 1.1 Suppose the observations of language L1 and L2 are 0. A translation M H

from L1 to L2 is adequa te if M yields an observation in (3 iff @ yields the same observation.

Adequacy is a minimal connection between source and translated code. Most reasonable transla-
tions are adequate.

There are other properties which may hold for a given translation, e.g., the translation may
be time- or space-bounded. Another semantic criterion requires that a translation preserve equiv-
alences of arbitrary pieces of code (e .g. , code in which functions or procedures have not yet been
declared). Two pieces of code are said to be equivalent iff they cannot be distinguished when placed
into any program context. More specifically,

Definition 1.2 A term M observationally approximates a term N with respect to observa-
tions 0 and language L (written M ~f N) if, for any L-context C[.], C[M] yields an observation
implies that C[N] yields the same observation. Two terms M and N are observationally con-
gruent (written M E: N) if both M 52 N and N cg M.

Observational approximation and congruence are important ideas in programming. For example,
observational congruence captures the notion of correct optimizations: replacing M by a faster but
observationally congruent term N will not change the final answer of the program. A translation
will be called fully abstract if i t preserves observational approximations (cf. [12, 22, 381):

Definition 1.3 Let O be the observations of L1 and La. A translation P H from L1 to L2 is
inequationally fully abs t r ac t if

Likewise, a translation P ++ P is equationally fully abs t rac t if M -z N t=, M =% fi.
Fully abstract translations are important for a number of reasons. First, fully abstract trans-

lations can be used to reduce questions about code equivdence or nonequivalence in one language
to another. For example, if there is an effective means of proving equivalences (observational con-
gruences) in language B and there is an effective, fully abstract translation from language A to
language B, then there is an effective proof procedure for observational congruences in language A:
first translate terms and then reason about them. Moreover, if the translation is time-bounded, we
may be able to deduce lower and upper bounds on decision procedures for proving equivalences.
Second, the concept of fully abstract translations yields a notion of expressiveness: language A
is "no more expressive7' than B if there is a fully abstract translation from A to B. This idea is
not new; Mitchell [13, 151 uses the idea of compositional, fully abstract translations t o compare
languages. Others have examined similar ideas. Felleisen's notion of expressiveness [7] based on
"definable operators" is a restricted version of fully abstract translations (where some of the opera-
tors of a language are not translated). More recently, Shapiro [31] uses a definition of homomorphic
translation to derive a theory of expressiveness of concurrent languages.

This paper explores fully abstract translations between functional languages. To keep the study
focused, we restrict attention to finding translations between various versions of the simply-typed,
functional language PCF. A full definition of the syntax of PCF appears in Section 2, along with the
operational and denotational semantics of three particular versions of the language, call-by-name
PCF [9, 22, 301, call-by-value PCF [9, 25, 33, 341, and lazy PCF [5, 6, 91.

Section 3 begins with a description of an adequate translation from call-by-value t o lazy PCF.
It is then shown that the translation is not fully abstract. Section 3 then repairs the translation
using syntactically-definable retractions, and proves that the translation is fully abstract. Sections 4
and 5 define other fully abstract translations from call-by-name to call-by-value PCF, and from
lazy to call-by-value PCF. These translations also rely upon definable retractions, and the proofs of
full abstraction use the same basic technique as the call-by-value to lazy case. Section 6 discusses
some complexity-theoretic corollaries to the full abstraction theorems.

Other effective, fully abstract translations based on godelnumberings of terms can be given.
Section 7 defines the notion of a functional t ranslat ion that eliminates such godelnumbering
translations from consideration. We then show that lazy and call-by-value PCF cannot be translated
into call-by-name PCF via a functional translation. This is evidence that the notion of a functional
translation leads to a nontrivial expressiveness theory. Section 8 concludes with a discussion of
some open problems.

2 PCF and its Interpretation

This section briefly reviews the operational and denotational semantics of call-by-name, call-by-
value, and lazy PCF. The reader familiar with these languages may care to skim this section and
refer t o it when necessary.

2.1 Syntax of PCF

PCF (Programming language for Computable Functions) is a simply-typed language which has
some simple constructs for computing with integers. The set of PCF-terms is the least set closed
under the formation rules of Table 1.l A term is a value if it is a numeral or A-abstraction; values
are denoted by V.

Most of the operations of PCF behave in the intuitive way. For instance, the sequential condi-
tional (cond M N P) reduces its first argument, returning the value of the second if the first halts
a t 0 and the value of the third if the first halts at a numeral greater than 0. The parallel conditional
(pcond M N P) , where M, N , and P have type L , differs from (cond M N P) operationally in one
respect: if N and P reduce to the same numeral, (pcond M N P) reduces to that numeral even if
M diverges. Parallel conditional is necessary for making the standard denotational models fully
abstract.

PCF is the syntax of call-by-name and call-by-value PCF. For lazy PCF, we add the formation
rule

M : a N : r
Convergence- tes ting

(conv M N) : T

and call the resultant set of terms LPCF. Informally, (conv M N) returns the value of N if the
interpretation of M halts, and otherwise diverges.

We adopt many of the standard notational conventions of the A-calculus [2] . For instance, terms
are denoted by the letters M , N, P, Q, S , and T. Parentheses may be dropped from applications
under the assumption that application associates to the left, i .e . , (M N P) is short for ((M N) P).

'There are alternative ways of building a syntax of PCF. Most notably, the syntax can be defined using constants
instead of term constructors 1221. Using constants for conditionals, however, leads t o a rather arcane operational
semantics of call-by-value PCF (cf. [35]).

Riecke-Fully Abstract Translations between Functional Languages

Variables xf : a , where i E N

M : u M : () N : r
A-abstraction Application

(Ax:. M) : (r -. v) (M N) : v

M : a
Numerals 0,1,2, . . . : L Recursion

px;. M : u

M : L M : L
Successor Predecessor

(succ M) : L (pred M) : L

M : L N : o P : a M : L N : L P : L
Conditional Parallel conditional

(cond M N P) : a (pcond M N P) : L

Table 1: Syntactic formation rules for PCF

We will also drop types from variables whenever the types are unimportant or can be deduced from
the context, and use the letters u, V , W, x, y, and z to denote variables. The usual definitions of
free and bound variables apply here, and terms are identified up to renaming of bound variables
[2]. Finally, syntactic substitution is written M[x := N] , where the substitution renames bound
variables to avoid capturing the free variables of N [2] .

2.2 Operational and Denotational Semantics of PCF

The operational semantics of PCF can be defined by a deductive semantics2 A deductive
semantics defines a binary relation & on terms by rules based on the structure of terms; we write
M lj V (read "M halts at value V") when there is a proof tree with result M l,l V, whose nodes
are instances of the rules defining the relation 4. It is important to understand the substantial
difference between deductive semantics and rewrite or "structured operational semantics" [2, 231.
In deductive semantics, terms are written to values in one big step, whereas in rewrite semantics,
the single-step relation may need to be used multiple times in order to rewrite a term to a value.

Each language has its own lj relation, called &,, &,, and for call-by-name, call-by-value,
and lazy PCF respectively. The rules defining these relations include the rules of Table Rules
specific to the three languages appear in Ta.ble 3.

The denotational models for the three languages-called N , V, and C-are environment models
whose the underlying spaces are Scott domains [l o] . For every type a , we assign domains Nu, V",
and C". The three denotational models share much of the same structure, e.g., the poset NL
(natural numbers with I , where I n for any natural number n and n k for any distinct

'This form of semantics has been given the title "natural semantics" by Gilles Kahn and others; i t has also been
called a n "observation calculus" by Bloom [4]. We call this form of semantics a "deductive semanticsn t o emphasize
the resemblance of the interpretation of terms t o proof trees.

3The expert reader may recall that Plotkin's interpreter for call-by-name PCF diverges on (pred 0) [22], whereas
our interpreter returns 0. This is a minor design change that makes the denotational semantics of t h e three languages
easier to use.

V $V, V a value
M U . 0 N U . V

(cond M N P) l j V

M U n M U (n t 1) P U V
(succ M) $ (n t 1) (cond M N P) 4) V

M 4 (n + 1) M u 0 N u k
(pred M) 6 n (pcond M N P) 4 K

M-UO M U (n + l) P $ k
(pcond M N P) IJ k

M [x := px. M] V N k P u k
(PX- h l) u v (pcond M N P) 4 k

Table 2: Deductive semantics rules for applying constants and reducing conditionals.

Table 3: Deductive semantics rules specific to the three languages.

Call-by-name

Lazy

Call- by-value

M 4, Ax. M' M 1 [x := N] 4, V
(M N) Un V

M J J I Ax. M r M'[x := N] V M $1 V r N U I V
(M N) $1 V (conv M N) U l V

M .IIu Ax. M' N 4, V r M 1 [z := V'] &, V
(M N) 4, V

Riecke-Fully Abstract Translations between Functional Languages

U X ~ D P = P (X)

[~ D P = n
[pxn. Mjp = U f n (l) , where f(d) = [M]p[x c dl

n>O

if [M l p = I
[succ M] p =

[M] p + 1 otherwise { l
if [M] p = I

[pred M] p = 0 if [M] p = 0
[M] p - 1 otherwise l

{
I if [[MJIp= I

[cond M N P] p = [Nnp if [M j p = 0
[P]p otherwise

[Nnp if [M] p = 0

[pcond M N P]p = [PIP if [M] ~ P > 0
[PIP if [NIP = UPIP
I otherwise

Table 4: Equations common to the denotational semantics of call-by-name, lazy, and call-by-value
PCF. Here, l denotes the least element in the appropriate domain. Abusing notation, we write n
for both the numeral denoting n and the natural number n itself.

natural numbers n and k) is the domain assigned to JV, VL, and LL. The semantic clauses in
Table 4 are shared among the three models as well; clauses specific to the three languages appear
in Table 5. The only differences between the three models are the domains assigned to the functional
types, and the corresponding semantic clauses for interpreting A-abstractions and applications.

2.3 Call-by-name PCF

The call-by-name interpreter requires one more rule beyond those appearing in Table 2. This is
the rule for evaluating applications of A-abstractions to arguments, where the arguments are passed
call-by-name, i .e . , without evaluation. This rule appears in Table 3. For call-by-name PCF, we
observe only numerals [22], and hence the observational approximation relation is

Definition 2.1 M La,, N if for any PCF-context C[-1, C [M] l,l, k implies C [N] 4, k.

For example, let R = p f"'. f; then (Ax. R x) C,,,, R.
The denotational model of call-by-name PCF is built out of continuous functions. The functional

spaces are defined inductively by N7"' = [N7 iC Nu] where [A -+, B] is the Scott domain of
continuous functions from domain A to domain B ordered pointwise [lo]. The missing semantic

Table 5: Extra semantic clauses for the three languages.

Call- by-name

Lazy

Call- by- value

clauses appear in Table 5. For the purposes of this paper, the most important use of the denotational
semantics will be to prove operational facts using the following theorem [22, 281:

N [X x . MIp = f , where f (d) = NIM]lp[x H dl

NW Nnp = (N U M I P I (N N I P)

C([Xx. M] p = lift(g), where g(d) = C([M]lp[x H d]

L6M Nil P = (LIIMllp) *I (L [N I p)

if L [M] p = I
L[conv M NIP =

L [N] p otherwise i '
V[Xx. Mnp = lift(strict(g)), where g(d) = V[Ml]p[x I-+ d]

V I M N I P = (v w n p) OW (V ~ N I P)

Theorem 2.2 Adequacy and inequational full abstraction for N :

Adequacy: For any closed term M of type L , M 4, k zfS N [M] = N [k] .

Inequational full abstraction: M En,,, N iff for all p, h l [M]lp C NIN]lp .

The notions of adequacy and full abstraction for models obviously parallels the notions of adequacy
and full abstraction for translations.

2.3.1 Lazy PCF

Like the call-by-name interpreter, the lazy interpreter also passes arguments by-name. Neverthe-
less, there is one significant difference between the two languages: lazy PCF includes extra terms
for convergence-testing. These extra terms are interpreted by the rule given in Table 3. In lazy
PCF we observe numerals, so

Definition 2.3 M ~ l , , y N if for any LPCF-context C[.], C[M] k implies C[N] lJl k .

For instance, (Ax. P) El,,, R: the context (conv [.] 0) distinguishes these terms, since (conv 52 0) hl
but (conv (Ax. P) 0) 0.

It is important to notice that one may observe termination and obtain the same observational
approximation relation. Suppose, for example, M El,,, N by the context C[.] and C [M] 4, m and
C[N] $1 n with m < n. Then the context D[.] = (cond (predm C[.]) 0 R), where

(predm P) = .. (pred (pred . . . (pred d P)))
"

m times

8 Riecke-Fully Abstract Translations between Functional Languages

forces D[M] to converge but D[N] to diverge. Both numeral and termination observations will
be important below, even though only one kind of observation is essential in defining the lazy
observational congruence relation.

The denotational model reflects the termination properties of lazy PCF using the domain-
theoretic operation of lifting. Lifting is used at functional type to distinguish between divergent
terms, which will mean I, and convergent terms, which will have denotations in the lifted part of
the space. Formally, for any poset D with a least element, Dl is the poset consisting of D and a new
element I, with I ordered below every element of D. Importantly, there are well-defined injection
and projection functions lift : D -. Dl and drop : DL -. D, where drop(lift(d)) = d and lift(d) # I
for all d E D. The function spaces for C are then defined inductively by Lr'" = [LT __tC ,Cull.
The semantic clauses for interpreting terms in this structure appear in Tables 4 and 5, where
d a l e = drop(d)(e) is used to simplify the notation. (Note that a1 is continuous in both arguments.)
This model matches the operational semantics of lazy PCF [5].

Theorem 2.4 Adequacy and inequational full abstraction for L:

Adequacy: For any closed term M of type L, M J,ll b iff CUM] = Cuk]. Moreover, for any
closed term M , M iffCfM] # 1 .

Inequational full abstraction: M &,,, N ifl for all environments p, C[IM]lp 5 CI[N]p.

2.3.2 Call-by-value PCF

The call-by-value version of PCF differs little from call-by-name or lazy PCF. The main difference
between the languages arises in the parameter-passing mechanism implemented by the interpreter:
in call-by-value PCF, all arguments are reduced to values before being substituted for formal pa-
rameters. The formal rule appears in Table 3. The observations of call-by-value PCF are numerals,
SO as before,

Definition 2.5 M CVa1 N if for any PCF-context C[.], C[M] 4, k implies C[N] .I), k.

One example of a call-by-value observational congruence is (Ax. x) r,,l (Ax. Xy. x y). Suppose both
terms are placed in a context C[.]. If x is ever instantiated by a term N during the evaluation
of C[Ax. X I , that term N must be a value. Since values always halt, N =,,, (Ay. N y). The
observational congruence now follows from this fact.

The denotational model of call-by-value PCF is built out of strict continuous functions, i.e.,
those continuous functions f for which f (I) = I. Let [A -+, B] denote the Scott domain of strict,
continuous functions from A to B, ordered pointwise [lo]. The functional spaces of V are defined
inductively by Vr" = [VT is VVII, and the language is interpreted using the semantic clauses of
Tables 4 and 5, where d a, e = drop(d)(e) and where

I i f e = 1
strict (g)(e) =

g (e) otherwise.

(Note that a, is continuous in both arguments.) This model fits the call-by-value operational
semantics [9, 32, 341.

Theorem 2.6 Adequacy and inequational full abstraction for V:

Adequacy: For any closed term M of type L , M 4, k iff V I M] = k. Moreover, for any closed
term M , M &, iff V [M] # I.

Inequational full abstraction: Ail C,,, N ifl for all environments p, V [M] p C V [N I p .

3 Translation from Call-by-Value to Lazy PCF

This section thoroughly explores one translation from call-by-value to lazy PCF. First we define a
basic, albeit naive translation. This translation will satisfy the adequacy property but not the full
abstraction property. The translation is then repaired so that i t becomes fully abstract. The proofs
of adequacy and full abstraction are developed in detail in this section, since the basic techniques
employed, right down to the statements of lemmas, may be carried over for the other translations
considered in Sections 4 and 5.

3.1 The basic translation

In [20], Ong defines a translation from call-by-value to lazy PCF. The idea behind this translation is
familiar and simple. Since the call-by-value interpreter forces evaluation of operands in applications,
the translation converts call-by-value functions to lazy functions which check their arguments for
convergence. The translation is defined by induction on the structure of terms:4

(succ M) = (succM) (cond M N P) = (cond M N P)
(pred M) = (xed B) (pcond M N P) = ipcond B T %)

3.2 Adequacy

Importantly, this translation satisfies the adequacy property, i.e.,

Theorem 3.1 For any closed term PCF-term M ,

M 4, n ii4fMl,ll n; and

Most proofs of adequacy for translations are based on connections between the interpreters of the
language [20, 211. Ong, for instance, proves the adequacy of his translation by setting up a tight
correspondence between steps in the interpreters for his two languages. But a technically simpler,
semantic proof is also possible for this translation, using the models V and L and the fact that
these models are adequate. This is the approach we will take.

The proof relies upon showing that there are elements of the lazy model (corresponding to strict
functions) that represent elements of the call-by-value model. The following inductively-defined

'There are a few technical differences between this translation and Ong's: Ong's translation tests for convergence
in the application case rather than in the abstraction case, and works with untyped languages without conditionals,
arithmetic, or recursion. Nevertheless, the spirit of the translations is the same, and both are adequate but not fully
abstract.

10 Riecke-Fully Abstract Translations between Functional Languages

relation, an instance of a logical relation [14, 371, states this relationship between elements of the
two models:

Definition 3.2 Define the relations Ra C V a x La by induction on types as follows:

1. d RL e iff d = e; and

2. f R"" g iff (f # I ++ g # I), and for any d Ra e , (f ow d) R7 (g 01 e) .

This definition should be compared to the definitions of logical relations in [G, 16, 251. There is
an operational justification for this relation. For instance, recall that divergent terms mean I in
both V and L. Thus, R relates the meanings of all divergent terms in call-by-value and lazy PCF.

We begin with a technical lemma on the relations that will be needed to handle recursions.

Lemma 3.3 Suppose d; R" e;, and (U d;) and (U e;) exist. Then (IJ d;) R" (U e i) .

Proof: By induction on types. The basis is straightforward since R1 is the identity relation. Now
consider the induction case, and let d = (IJ d;) and e = (U e;) . It is not hard to see that d = I iff
e = I. Now suppose d' R" el. By hypothesis, (d; o, dl) R' (e; a1 el), SO by induction

U (d ; ow dl) R7 U (e; el e')

By the continuity of 0, and 01, ((U d;) a, d') R' ((U e;) 01 e') and so (d a, d') R' (e ow el) as desired.

This property which is sometimes called "inclusivity" or "directed completeness," since R preserves
least upper bounds of directed sets.

The key lemma needed for the proof of Theorem 3.1-an analog of the Fundamental Theorem
of Logical Relations [14,37]-shows that the meanings of all call-by-value terms are related to their
lazy translates. To relate the meanings of open terms (which will be encountered inductively), we
need a condition on environments: a V-environment p and an C-environment p' are compatible if
for any variable xu, p(xa) Ra p'(xU). Then

Lemma 3.4 For any PCF-term M and compatible p and p', V[M]lp Ra C[Wp1.

Proof: By induction on the structure of terms. In the basis, M is either a variable or numeral. If
M is a variable xu, then by hypothesis

If M is a numeral n, then V [n] p = n R' n = LIZ]lpl.
There are seven cases in the induction step; we consider application, A-abstraction, and recur-

sion here and leave the remaining cases dealing with successor, predecessor, and the condition-
als to the reader. First, suppose M = (M I M 2) . By induction, for any compatible p and p',
VIMil]p R L [~] l p l . Thus, by the definition of R,

as desired.
Second, suppose M = Axa. N . Let d = V [M] p and e = c [T ~ ?] ~ ' . Obviously d # I and e # I,

since both are the meanings of A-abstractions. Now we consider their meanings when applied.
Suppose dt Ra et. If d' = I, then e' = l and thus d a, d' = I R7 I = e a[e' since e checks its
argument for convergence. If, on the other hand, dt # I , then et # l and so

where the second line follows from the induction hypothesis and the fact that p[x H d'] and
pl[x H el] are compatible. Thus, d R e as desired.

Finally, suppose M = pxa. N . Let f (d) = V [N] p [x I+ dl and g(e) = CI[N]~'[X H el. First, it
follows easily from the definition of the relations that fO(l) = I Ra I = gO(I). By the induction
hypothesis,

f " ~) = V [N] p [x I+ I] Ra L[T]~'[X H I] = gl(l)

since p[x H I] and pt[x H I] are compatible environments. Thus, using a simple induction on n,
i t is easy to see that f n (l) Rg g n (l) for all n. Since { f n (l) : n 2 0) and { g n (l) : n 2 0) are
both chains, their lub's exist and hence by Lemma 3.3 we may conclude

as desired. H

Proof of Theorem 3.1: Suppose, for instance, that M is a closed PCF-term and M 4,. Then
by the adequacy theorem for V , V [M] # I . Since it follows from Lemma 3.4 that V I M] Ra C([M],
it must be the case that L [M] # I. Thus, by the adequacy theorem for L, M JJr. The converse
and the case when M is of type L follow along similar lines.

3.3 Failure of full abstraction

Theorem 3.1, together with the fact that the translation is compositional-i.e., the translation of
a term is defined by the translation of its components-implies one direction of full abstraction.

-
Corollary 3.5 For any PCF-terms M and N , N implies M Eva[N .

Proof: Suppose M gVal N . Then there is a context C[.] in which either

C [M] lj, and C [N] fi,; or

C [M] lj, m and C [N] JJ, n, where m and n are distinct numerals.

Suppose the former of these cases holds (the Iatter case can be argued similarly). By Theorem 3.1, - --
i t follows that C [M] $1 and C [N] h.~. Because the translation is compositional, C [M] = C [M] , - --
where "holes" in contexts are translated to "holes." Similarly, C [N] = C [N] . Thus, this context - -
C[.] distinguishes M and E, so % El,,, N .

12 Riecke-Fully Abstract Translations between Functional Languages

The converse of Corollary 3.5 fails, and hence the translation is not fully abstract. A simple example
demonstrates this fact. Consider the PCF-terms All = AxML. x and M2 = X X ~ + ~ . XyL. (x y) . One
may verify that MI =,,I M2 using the model V , but the terms

-
MI = XxLiL,convx x -
M2 = AxL-". conv z (XyL. conv y (x y))

are not lazy observationally congruent: the context C[.] = [.] (Xz. 3) R (where R is any divergent
term of type L) causes the first term to return 3 and the second to diverge under the lazy interpreter.

What is the problem with the translation? The problem lies in the translation of variables. For
instance, the variable z in can be instantiated with any LPCF-term, including (Ax. 3) which is
not strict in its argument. In other words, contains variables that do not range over the target
of the translation. The term K, on the other hand, forces x to diverge if its argument y diverges.
If there were some uniform way to force a term of functional type to be strict, we could guarantee
that the variable x in would range over only strict functions.

There are two possible recourses for obtaining full abstraction. On the one hand, one could
change the definition of El,,, so that contexts with strict functions are the only ones allowed. This -
would probably be enough to guarantee that M CUal N i f f % El,,, N. On the other hand, one
could change the translation so that it becomes fully abstract. We shall take the second course,
since we want to see if i t is possible to obtain a fully abstract translation; the other course is left
open, although it has been considered elsewhere for other translations [39].

3.4 Full abstraction

Forcing terms of functional type to be strict is the key idea in repairing the translation. Define
terms Su of type (a -+ a) as follows:

SL = AxL. x

ST'" = AxTiV. conv x (XyT. conv y (6" (x (ST y))))

These S's are "strictifying" functions. The function ST'" makes its first argument x strict by
checking the second argument y for convergence, then passing the strict version of y to x and
"strictifying" the result.

A first important observation is that "strictifying" twice is the same as "strictifying" once.
Abusing notation, we write SU for L[Su].

Lemma 3.6 So is a retraction, i.e., 6" 0 1 (SU 0 1 e) = So 0 1 e.

Proof: By induction on types. The basis is easy to verify, since S ' i s the identity function. Now
consider the induction step, where a = (r + v). There are two cases: either e = I or e # 1 .
If e = I, then S 01 e = I = S 01 (6 0 1 e). If e # I , note that neither (6 01 e) nor (6 el (6 el e))
is I, since both are the meanings of X-abstractions. Thus, both elements are in the lifted part of
the domain LT'", or in other words, both (S 0 1 e) and (6 01 (6 01 e)) are lifted functions. Thus,
to show these elements are equivalent, it is enough to show that they agree when applied to any
element in LT via el (recall that d 01 d' = drop(d)(df)). So suppose e' E L'. If e' = I, then

(6 a1 e) a1 e' = I = (6 a1 (6 a1 e)) a [e'. If el # I, then

(bT-', a1 e l e)) a1 el = Su a1 ((ST-*' e) a1 (ST a1 e l))
= 6'' a1 (dU a1 (e a1 (ST a [(dT a1 e l))))
= 6" a1 (e a1 (ST a1 e '))
= (dT+" a1 e) m i el

where the first, second, and fourth lines follow from the definition of dT'", and the third line follows
by the induction hypothesis. Thus, since neither (6 a1 e) nor (6 el (6 a1 e)) is 1, the elements (6 a1 e)
and (6 al (S a1 e)) are the same lifted function. H

The functions 6" are the essential ingredient to repairing the translation. We modify the
translation so that variables are translated via the clause

with all other clauses given as before. From now on, let M denote the translation of a term M
under the modified translation. This translation is adequate and fully abstract.

Theorem 3.7 The new translation satisfies the following properties:

1. Adequacy: For any closed PCF-term M , M 4 , iff M ! J l . Moreover, i f M is of base type, then
M 4, n i f f M u l n.

-
2. Inequational Full Abstraction: For any A1 and N , M LUa1 N ifS % L1,,, N .

The proof of adequacy of the new translation follows along the same lines as the proof of Theo-
rem 3.1: the only modification necessary is the variable case of Lemma 3.4, which may easily be
seen to follow from

Lemma 3.8 If d Ru e, then d R" (6" a1 e) .

Proof: (Sketch) By induction on types.

The (+) direction of full abstraction now follows from the adequacy result, using the same argument
given in the proof of Corollary 3.5.

In contrast, the proof of the (+) direction of full abstraction requires some new ideas, although
as before, the proof relies on the models V and C. By the full abstraction theorems for ,C (Theo-
rem 2.4) and for V (Theorem 2.6), it is sufficient to show that V I M] C V [N] implies c[%] C ~[z].
Suppose M and N are closed terms and hl = CUB] and h2 = C[xl], but hl h2. Thus, there is
some way of applying hl and h2 (using a ,) to other elements ei to obtain some distinction. Our
goal is to show that

Theorem 3.9 For any M of type 0 and C-environment p, c[?]~ = (6" ~[? i?]~) .
which will imply that ei can be assumed to be in the range of 6, and that

Theorem 3.10 For any e E C" i n the range of S" (i.e., e = (5" a1 e') for some e'), there is a
d E V" such that d Ra e. That is, the relation R" is surjective on the range of 6".

14 Riecke-Fully Abstra.ct Translations between Functional Languages

Intuitively, then, hl and h2 can be distinguished by legal representations of call-by-value elements.
It will follow that V [M] and V [N] are distinguishable.

We begin by proving Theorem 3.9, for which we need the following lemma.

Lemma 3.11 For any PCF term M , variuble x of type a , and L-environment p,

Proof: By induction on the structure of M, using the fact that x is translated to (S o x).

Proof of Theorem 3.9: By induction on the structure of the term M. In the basis, M is either
a variable x or a numeral k . If M = x , then

where the second equality follows from Lemma 3.6. If M = b , then

as desired. There are seven cases in the induction step; we consider three cases here and leave the
others to the reader.

1. M = (P Q) . Then by the induction hypothesis,

If either .L[P]p or L [a p is I , then L[Ti?]p = I = (6" m i L [z] l p) . Otherwise,

where the first line holds by the definjtion of ST'" and the last line holds by induction.

2. M = (AxT. P) , where a = (T + v). Let hl = L[Ax. c o n v x ~] p and h2 = (6" m i hl). Since
hl # I, it follows from the definitions of 6 that h2 # I . We therefore just need to show
that hl and h2 are equivalent when applied using m i . So suppose d E L T . If d = I, then
hl m i d = I = h2 m i d . If d # I , then

h2 m i d = (6" a 1 (hl m i (S T a 1 d)))
= (6" a [~ [[P] l p [x - (6' m ~ d)])

= (6" m i LI[P]p[x - d l)

= L [T] p [x H dl = hl m i d

where the first line follows from the definition of S o , the third line follows by Lemma 3.11,
and the fourth line follows by induction.

3. A4 = (pxu. P). Let f(d) = C[FIp[x ++ dl. Note that I = (6" 0 1 I) . Also, for any n 2 1,

where the second line holds by induction. Thus,

This completes the induction step and hence the proof.

The main part of the argument is to prove Theorem 3.10. We follow a method due to Friedman
[8] and Plotkin [24], showing that the relations R" are functional, continuous, and surjective on the
range of 6. (The additional requirements are just extra hypotheses necessary to prove surjectivity.)
Define the auxiliary functions a" : Va + La and P" : Cu -. Vu, where

I i f d = I
Dr-u(e) = { I i f e = I

g otherwise

where f # I and g # I and

if e' = I { (, (6 e l e) otherwise

g..dl = { .I-
if d' = I

p"(e (rr(d')) otherwise

It is not a t all clear that these functions are well-defined. For instance, the result of aL"(f)
may not be in the set C"'" = [NL +, NLI1. The following lemma shows that this cannot happen.

Lemma 3.12 1. For any d E V0 and e E Lo, (ru(d) E Lo and P U (e) E V"; and

2. au and p" are continuous functions.

Proof: By induction on types. The basis is not difficult, since VL = LL and cyL and P h r e the
identity functions. Now consider the induction case for the type a = (T -+ v):

1. We will show that f = cru(d) E Lo ; showing that ,Bn(e) E V" is similar and omitted. If d = I,
then f = I E LT"'. NOW suppose d # I. We need to show that f is a (lifted) continuous
function from C' to L". Pick any e' E Cr. If e' = I, then f e' = I E C". If e' # I , then

f el e' = av (d o , (pr(Sr e '))) E LV

by induction. Thus, all we need to show is that f is a lifted, continuous function. So
suppose X C C7 is a directed set. If U X = I , then all elements of X are I and hence

Riecke-Fully Abstract Translations between Functional Languages

f a1 (U X) = I = U,,, (f 01 x) . If U X # I, then some element in X is not I and hence

where the second line follows by induction (the continuity of a" and P T) and the continuity
of 0, and ST. Thus, f E CT'".

2. Again, we will only show aT" is continuous, since the proof that p'" is continuous is
similar. Suppose Y 5 VT'" is directed; our goal is to show that u = aT+"(U Y) is the same
lifted continuous function as v = UyEY (aT+"(y)). Suppose, on the one hand, (U Y) = I;
then all elements y E Y are equal to I. Thus, u = I = v. Suppose, on the other hand,
(U Y) + I. Then u # I and v # I. To show u and v are equal as lifted functions, suppose
e' E LT. If e' = I, then

If e'# I, then

= U (aTiy (y) el el)
Y €Y

where the second line follows from the continuity of a" and mu, and the third line follows from
the definition of aT'".

This completes the induction step and hence the proof.

Theorem 3.10 follows directly from Part (1) of the following lemma.

Lemma 3.13 For any d E V" and e E LC,

1. Pu(S" el e) R" (6" or e) ; and

2. If d R" (6" 01 e) , then au(d) = (So rl e) .

Proof: By induction on types. In the basis, Part (1) follows immediately since R L is the identity
relation on V L = CL and P L (S h l e) = (6' 01 e) , For Part (2), suppose d RL (S L 01 e). By the definition
of the relation, d = (SL 01 e). Thus, by the definition of a', aL(d) = d = (S L 01 e) as desired.

Now consider the induction case for type a = (T + v). There are two parts to verify.

1. The definition of P"" implies that P T + " (f) = I iff f = I. Thus, PT'"(ST'" at e) = I iff
(ST+' a, e) = I. Now suppose (bT'" a1 e) # I and d' RT el. If dl = I, then el = I and so

(pT'"(ST'" a1 e)) a, d' = I R" I = (ST'" a1 e) a1 el

Suppose, on the other hand that d' # I; then el + I. By Lemma 3.8, dl RT (S T a1 el).
Therefore,

(pT'"(S"" a, e)) a, d' = PU((S"" a1 e) a1 (a T (d ')))
= /3y((&T+u a1 e) a1 (S T a1 e l))
= pU(S" a1 (e a1 (S T a1 (S T a1 e l))))
= P"(Sv a1 (e a1 (S T a1 e l)))

RV 6" a1 (e a1 (S T a1 e l))

Ru (ST'" a1 e) a[el

where the second and fifth lines hold by induction, and the fourth line holds by Lemma 3.6.

2. Suppose d Ra (So a1 e) . If d = I, then a o (d) = I = (So a, e) . If d # I, then (6"" e) # I.
To show that a W v (d) = (ST'" a[e) , we therefore only need to show that they agree when
applied using a[. So consider any element el E LT . If e' = I , then

Now suppose e' # I. By induction, ,8'(ST a1 el) RT (S T e l e') and so

Therefore,

aT+"(d) a1 er = a U (d a, PT(S7 a1 e l))

= (ST+" a1 e) a1 (S T a1 el)

= 6" a1 (e a1 (ST a1 (S T a1 e l)))

= SV a1 (e a1 (ST a1 e '))

= (ST+" 01 e) a1 e'

where the first line holds by the definition of a"", the second line holds from the fact above
and the induction hypothesis, and the fourth line holds from Lemma 3.6.

This completes the induction step and hence the proof. W

-
Proof of Theorem 3.7, Part (2), (+): Suppose %!f gl,,, N. Then by the full abstraction the-
orem for C,

LUJfllpl !l L U ~ P '
for some environment pr. Let hl = L[?JJpl and h2 = ,C[npr. By the properties of lazy models,
there is some sequence of arguments e l , . . . , e k (possibly the null sequence) such that either

1. (h l el a1 . . . e k) # I and (h 2 0 1 e l 0 1 . . . at el ;) = 1; or

18 Riecke-Fully Abstract Translations be tween Functional Languages

2. (hl 01 el . . . 0 1 ek) = m and (h2 01 el el . . . 01 ek) = n, and m and n are different natural
numbers.

Let us consider only the first case, since the second case can be proven similarly. By Lemma 3.11,
we may assume without loss of generality that for all variables xu, pl(xu) is in the range of So.
By Theorem 3.9, hl and h2 are in the range of 6, and hence we may also assume without loss of
generality that ei are in the range of the 6's (since hi = (Su 01 hi) forces its arguments to be in the
range of the 6's). By Theorem 3.10, there are elements d; E V with d; R e;, and moreover, there is
a V-environment p that is compatible with p'.

We will use these elements d; to distinguish hi = V[M]p from hi = V[N]p. By the analog of
Lemma 3.4 for the modified translation, hi R hi. By the definition of the relations, i t follows that
(hi r, dl r, . . .a, dk) # I but (hk r, dl 0 , . . . o w dk) = I. Thus, hi hk, which by the full abstraction
theorem for V implies that M gval N. This completes the proof.

4 Call-by-name to Call-by-value PCF

We might take the same kind of approach in translating call-by-name PCF to call-by-value PCF,
and translate call-by-name A-abstractions to call-by-value A-abstractions. There are, however,
a few technical obstacles to overcome, because evaluation of applications is different in the two
languages. Consider, for instance, the PCF-terms ((Ax. 3) (p f. f)) and 3. Under call-by-name,
both terms reduce to 3; under call-by-value, however, the first diverges.

We therefore need a new idea to translate call-by-name to call-by-value PCF. We use the stan-
dard trick of delaying the evaluation of a term; under call-by-value, all A-abstractions terminate, so
delaying may be accomplished by wrapping a term in a dummy A-abstraction. This guarantees that
all terms-and hence all operands in applications-terminate, so that the call-by-value interpreter
never diverges when evaluating an operand. For simplicity, dummy arguments will be of type L,

although one could use dummy arguments of any type. Terms of type a are therefore translated to
terms of type a', where

The full translation from call-by-name to call-by-value appears in Table 6. Again, we need
retractions yo-which force terms to be constant functions in their first argument-to make the
translation fully abstract.

Theorem 4.1 The translation M H 2 from all-by-name to call-by-value P C F is adequate and
inequationally fully abstract. That is,

1. Adequacy: For any closed M of type L , M J,tn n ifl(G 3) 4, n; and

2. Inequational Full Abstraction: For any M and N, M Enam, N iff M ̂ Lva1 $.

The proof of this theorem uses the same methods as those outlined above: we build a logical relation
from a fully abstract model of call-by-name PCF to the model V, and show that it is surjective on
the range of y. The complete proof may be found in [27].

Table 6: Translation of call-by-name to call-by-value PCF. We always assume that z ' i s a fresh
variable not appearing in the term to be translated.

5 Lazy to Call-by-value PCF

A

-

The same ideas may be adapted to building a translation from lazy to call-by-value PCF. Table 7
gives such a translation. Here, most of the clauses for terms are identical to the previous translation;
the only exceptions are the definition of the retractions xu, the clauses for translating variables and
applications, and the additional clause for translating conv. This translation also turns out to be
adequate and fully abstract:

A

xu = (yo (XzL. xu! z))
A

b = X z t k

S U Z M = ~z\ssucc (G 3)
p r z ~ = Xzl. pred (G 3) -
Axu. M = XzL. XxU'. Mh
(AE~N) = ((G3) $1-

c o n d z N P = XzC. cond (M 3) (E 3) (p 3)

pcond% N P = X z L . p c o n d (G 3) (i ? 3) (p 3) -
pzu. M = pxu'. G

y1 = .XLf. XzL. x 3
Y ~ ' ~ = ~ x (" ~) ~ . Xz" .yT1. (y V (XzL. x 3 (y7 y) 2))

-

Theorem 5.1 The translation M H % from lazy to call-by-value PCF is adequate and inequa-
tionally fully abstract. That is,

1. Adequacy: For any closed LPCF-term A4, M $I k ifl (G 3) V, k , and M JJl iff (G 3) 4,;

2. Inequational Full Abstraction: M Elaz, N ifl M^ CVar $.

Again, the proof uses the same basic technique, constructing a logical relation from the model G
to the model V that is surjective on the range of X . The complete proof may be found in [27].

6 Corollaries of Full Abstraction

There are a number of complexity-theoretic results, regarding the time required to prove observa-
tional approximations, that can be deduced from the full abstraction theorems. For instance, we
can deduce a lower bound on the time required to prove call-by-value observational approximations
of pure terms-those not involving numerals, successor, predecessor, recursion, or conditionals.
To find this lower bound, first note that call-by-name observational approximations of pure terms
coincides with ,877-equality (see [G , 271 for the complete argument). Thus, since /I?-equality of pure

Riecke-Fully Abstract Translations between Functional Languages

6

xu = (xu (XzL. xu' 2))
A

k = Xz\k
h

succ M = XzL. succ (M^ 3)
p r r ~ = XzL. pred (M^ 3) -
Axu. M = XzL. AX"' . M^
(M-N) = XzL. ((G 3) r S) z

c o n d z N P = XzL. cond (2 3) (f i 3) (p 3)
p c o n d z N P = XzL. pcond (G 3) (f i 3) (F 3) - A

pxu. M = C ~ x u ' . M
conTM N = XzL. (Xw. 5) (M^ 3)

xL = XxL1. XzL. 2 3
x ~ + ~ = XzL. (X W . XYT1. (x V (XzL. x 3 (xT y) z))) (x 3)

Table 7: Translation of lazy P C F to call-by-value PCF. As before, zL is a fresh variable not appearing
in the term to be translated.

terms cannot be solved in elementaay recursive time [36] , testing t o see whether M Enam, N for
pure M and N cannot be solved in elementary recursive time either.5 Since the translation from
call-by-name to call-by-value PCF works in linear time,

Corollary 6.1 The following question cannot be decided in elementary recursive time: given two
pure PCF-terms P and Q , is i t the case that P Enal Q ?

Proof: Suppose P Lna~ Q can be decided in elementary recursive time. Then one may decide
whether M Enam, N for pure terms: first translate and check whether M^ EVal f i . The result of

A

this procedure is correct, since M L,,i fi iff M Cna,, N. This would give a procedure that runs
in elementary recursive time for determining whether M I&,,, N, which is a contradiction. Thus,
P CVa1 Q cannot be decided in elementary recursive time. .
This corollary implies that deciding M EUal N requires time beyond that expressed by any fixed,
finite stack of 2's.

Along similar lines, one can show that the problem of deciding M 'Cia,, N for pure conv-terms
(those containing only the construct conv) cannot be decided in elementary recursive time. In
fact, the decision problems M Cl,,, N for pure conv-terms, and M N for pure terms, are
equivalent under polynomial-time reducibility: this follows immediately from the fact that there

5Non-elementary recursive time implies that a problem cannot be decided in time

for any bounded height of exponents [29]

are linear time reductions-via the translations-between these two problems. We conjecture the
following upper bound:

Conjecture 6.2 The decision problem M L,,1 N for pure M and N can be solved i n iterated
exponential time (i.e., within time determined by some stack of 2's, where the height is determined
by the size of the term). Thus, the problem of deciding M C,,,, N for M and N pure conv-terms
can also be solved i n iterated exponential time.

It is already known that the problem of M II,,,, N for pure M and N can be decided in iterated
exponential time [29, 361.

7 Functional Translations

In the introduction, we argued that fully abstract translations could provide the basis of an ex-
pressiveness theory. Nevertheless, there are trivial solutions to the problem of finding fully ab-
stract translations between languages. This section considers such a trivial translation based on
godelnumbering, and then attempts to build an expressiveness theory by placing conditions on
translations.

7.1 Gijdelnumbering translations

It is easy t o design a fully abstract tra.nslation between any two programming languages. For
instance, if the target language contains numerals and all numerals are observationally distinct,
one could simply translate all terms in an observational congruence class to a unique numeral
in the target language. This translation preserves observational congruences and non-congruences.
Nevertheless, we would not consider it a reasonable translation, since it is not effective. But even the
condition of effectiveness is not sufficiently strong to rule out unreasonable translations. Consider
the case of translating lazy PCF into call-by-name PCF.

Theorem 7.1 There exists an eflective translation M H 2 of lazy to call-by-name PCF that is - -
equationally fully abstract, i .e . , M zl,,, N u M =,,,, N.

Proof: (Sketch) We translate an LPCF-term M to (I #M), for some godelnumbering # of LPCF-
terms. The closed term I : L -+ L -+ L represents a "two-argument interpreter" for lazy PCF written
in call-by-name PCF, where the first argument is the term to interpret and the second argument
is a godelnumbered tuple of arguments to M (possibly an empty tuple). It is not hard to design
such an interpreter meeting the following requirements:

1. (I # M (nl, . . . , n,)) fin if any of n l , . . . , n , is not the godelnumber of a closed term;

2. (I # M (#Nl, . . . , #N,)) fin if the lazy term (M Nl . . . N,) is not well-typed;

3. (1 # M (#NI,. . . , #Nm)) 4, iff (M NI . . . N,) 4,; and

4. (I # M (#Nl,. .. , # N m)) 4, k iff (M N 1 . . . N,) J,ll k.

To verify that the translation preserves observational congruences, suppose M N with M
and N having type (al + . . . -+ a, -+ L). By the proof of the full abstraction theorem for lazy
PCF (Theorem 2.4), there are terms PI , . . . , P, such that either

22 Riecke-Fully Abstract Translations between Functional Languages

1. (M PI.. . Pm) GI and (N Pi.. . Pm) hl; or

2. (M Pi.. . Pm) 41 k and (N P i . . . P,) kt, where k # kt and m = n.

By the properties of I, (G (#PI, . . . , # P,)) has different behavior than (3 (#PI, . . . , #Pm)).
Thus, $,,,, E. The converse follows similarly and is omitted. W

Similar translations based on godelnumbers can be found between almost all universal programming
languages, i.e., those languages that can represent all partial recursive functions. An expressiveness
theory based on only full abstraction must therefore identify most languages.

7.2 Definition of functional translations

In order to build an interesting expressiveness theory, we must place more stringent conditions
on translations. There have been other attempts to find suitable conditions on translations. In
[13, 151, for example, Mitchell examines translations that are compositional and preserve observ-
able behavior, and is able to prove that there are no compositional translations between certain
languages. Others, including Felleisen [7] and Shapiro [31] have developed similar definitions based
on compositionality.

Unfortunately, not all of the translations in this paper fit the definitions of Mitchell, Felleisen,
and Shapiro. In particular, two of the translations-the translations from lazy and call-by-name
to call-by-value PCF-produce terms that do not have the same observable behavior as source
terms: one must first apply a "dummy" numeral argument to obtain an observable result. Other
reasonable translations, e.g., continuation-passing style (cps), also require applications at the end
of translation in order t o produce results [21]. Of course, we might extend these definitions so that
a translation may place a term-generated from a source term in some compositional manner-into
some uniform context. This would cover the case of translating from call-by-name to call-by-value.
But this definition would also allow godelnumbering translations, since one could explicitly compute
the godelnumber of a term in the target language (which can be defined compositionally) and then
apply the interpreter function I to the result.

The search for suitably restrictive syntactic conditions seems unclear and complicated. We
therefore leave the search for syntactic conditions open, and instead look for semantic conditions.
Since the proofs of full abstraction for all three translations above are similar semantically, we use
the common structure in seeking suitable conditions on translations. For simplicity, we consider
translations between a restricted class of functional languages:

Definition 7.2 A simply-typed functional language L is a set of terms and observations 0
in which every term is assigned a type in the grammar

and where the set of terms is closed under application, i.e., (M N) is a term of type v whenever M
and N are terms of types (r 4 v) and T respectively. Also, for any terms M : (a -4 r) and
N : (7 + v), there must exist an L-term (N o M) : (a -+ v) such that for any L-term P of
type a , ((N o M) P) (N (M P)). Finally, L must be operationally extensional (cf. [3, 41)
with respect to its observational congruence relation, i . e . , M =z N iff for all terms PI , . . . , Pk,
(M PI . . . Pk) yields the same observations as (N Pi . . . Pk).

When we take the set of terms to be the closed terms, call-by-name, call-by-value, and lazy PCF are
simply-typed functional languages. In order to obtain operational extensionality for call-by-value
and lazy PCF, we need to observe both numerals and termination; nevertheless, observing both
numerals and termination does not change the observational congruence relations for call-by-value
and lazy PCF.

It is instructive to first consider the translation from call-by-value to lazy PCF. Under this
translation, lazy versions are "functionally equivalent" to the original call-by-value terms, in the
sense that translations of terms of type L have the same values as the original terms, and translations
of functionally-typed terms, when provided with strict arguments, return strict results. This tight
correspondence between the source and target terms is captured by a logical relation. Logical
relations will thus play a key role in the definition below.

Under the other two translations, the connection between source and target terms is not as
clear: a translated term has a different type than its source term. Nevertheless, using a definable
projection function 4, we may recover some of the behavior of the source term. At ground type,
d L : L' -+ L is the function that applies a term of type L' to a dummy argument (3 in our version
of the translation) to obtain a numeric result. In fact, this projection function is generic, viz., it
does not matter which numeral we pick to apply to terms. Similarly, one may define call-by-value
functions

4T-" : (7 -4 v)' -+ (7' + ut)

that apply their argument to a dummy argument to obtain a function. Indeed, suitably-defined
projection functions are a key feature of each of the translations: the projections for the translation
from call-by-value to lazy are simply the identity functions.

Putting these ideas together, we arrive at the following definition, slightly modified from the
definition appearing in [26]. To simplify the definition, we use the notation La to denote L-terms
of type a, and the notation M $0 N (read " M mutually simulates N") to signify that M and N
yield the same observations in 13 when evaluated (M and N may be in different languages).

Definition 7.3 Let L1 and L2 be simply-typed functional languages with observations 0. Let
M H be a translation of LT to L';' (note that this means the translation must work uniformly
on types). Then the translation is functional if there are La-definable projections

and relations Ra & Ly x L;' such that

F1 (M R M).
F2 R is a logical relation:

1. M R V implies M +o (4"); and

2. M RT'" N implies M +o (d7'" N) , and P R7 Q implies that (M P) R" (N a Q) ,
where N a Q = ((c$~'" N) Q).

-
F3 Applications are translated uniformly: (M N) -& ((4 MI) fi).
F4 Projections 4 are generic: For any La-term N in the range of R and any L2-terms Qi of the

appropriate type, (4 N) =z2 (N Q1. . . Q,).

24 Riecke-Fully Abstract Translations between Functional Languages

F5 Translated functions convert arguments to the range of R: For any M in the range of RT'"
and P of type r', there exists a term P' in the range of RT such that (M P) =& (M PI).

F6 The target sublanguage is operationally extensional: Suppose M and N are in the range of
Ru, and for all Pi in the range of R ,

Then M rR N.

This definition should be compared to the definition of the relations R given in Section 3.2. The
final clause is necessary t o achieve full abstraction: intuitively, it says that if two terms in the target
of the translation are distinguishable operationally, there is a way of distinguishing them by terms
in the target of the translation.

We begin by proving that all functional translations are fully abstract.

Lemma 7.4 Suppose M H MI is a functional translation from Lr to L;' with projections 4'' and
relations Ru. Suppose further that M Ra P and N Ru Q . Then M N iff P =g2 Q .

Proof: (e) Suppose M f N. Then by the operational extensionality of Ll, there exist terms
P; with (M P I . . . Pk) Fo (N PI . . . Pk). By Clauses F1 and F2,

(#) (P e g&)) +, (4 (Q . g r &)).

Thus, P f & Q.

(+) Suppose P f f j z Q. Then by Clause F6, there exist Pi in the range of R such that
(4 (P PI a .. . Pk)) eo (4 (Q PI . . . Pk)). Now pick P,! such that P;' R Pi (these must exist).
By Clause F2, (M P i . . . P i) $o (N P i . . . Pk). Thus, M N .

Theorem 7.5 Let L1 and L2 be simply-typed functional languages. Suppose M H MI is a func-
tional translation from L1 to L2 with relations R. Then M H M is equationally fully abstract.

Proof: Follows easily from Lemma 7.4 and the fact that M R G. H

In order to be a suitable basis for an expressiveness theory, functional translations should be
closed under composition. This has an intuitive justification: if language A is no more expressive
than B (i .e . , there is a functional translation from A to B), and B is no more expressive than C,
then A should be no more expressive than C.

Theorem 7.6 Suppose there are functional translations M H M from Ly to L;' and M H $?
from L; to L;", and O is the set of observations for each of the three languages. Then there is a

functional tmnslation from L l to L")".

Proof: Let R; and 44 be the parameters of the two functional translations. Define
I I1

Rp = R$ o Ry Ly X L?)

4," = 42" 0 ($2""" 8) : (L')" + L

- 437- -
9;""' (4z'""'-"1-"" 4;'") - : ((r + v)')" - (r')" - (v')"

-
The reader may check that these relations and terms have the advertised type. Let M ̂ = M ; we
must verify the requirements F1-F6 hold for this composite translation:

1. M R3 &?: This is obvious, since M R1 % R2 %?.
2. R3 is a logical relation: There are two requirements to verify-R3-related terms produce

the same observable behavior, and applying related terms to related arguments produces
related results. For the first part, suppose that M R$ P, i.e., there exists an N such that
M Rr N R;' P. By Clause F2, M $0 N) and (41 N) $0 ($2 (z @2 P)) IR (43 P) ,
where L *2 Q = ((42 L) Q). Thus, M +o (43 P) as desired.

Now suppose a = (7 4 v), and there exists an No such that Mo Ry No 11;' Po. Suppose
further that MI RT N1 R;' PI. By Clause F2,

(Mo MI) R1 ((41 No) Nl) Rz ((& .z Po) @2 PI).

However, by the definition of 43, ((& m2 Po) *2 PI) =& ((43 Po) PI) , so by Clause F2 we may
conclude

(Mo M1) R1 ((41 No) Nl) R2 ((43 Po) PI).

Thus, (M o MI) R3 (PO m 3 PI), where (PO m 3 PI) = ((43 Po) PI), as desired.

3. (M N) =& ((43 G) 8): To make the notation a bit easier to read, define 3 (M) = %f. Then

where the first line follows from the definition of 43, and the third, fifth, and sixth lines follow
from Clause F3 of the definition of functional translation.

4. 43 is generic: Suppose P is in the range of R3. Then there are terms M and N with
(M R1 N R2 P). By Clause Fl , we know that N R2 &. By Lemma 7.4, P I& fi. Thus, for
any L3-terms Pi and Q; and L2-terms Sj of the appropriate types,

where the second line follows from the definition of 43, the third and sixth lines follow from
Clause F3, and the fourth, fifth, and seventh lines follow from Clause F4. This is now almost

26 Riecke-Fully Abstract Translations between Functional Languages

in the form we want-except that some of the arguments (namely g) are in the range of one
of the translations. So consider any L3-terms S:. By Clause F5, there exists an Sy in the

0 - range of R2 such that (fi 0 2 S: 0 2 . . . 0 2 S;) (N 0 2 SY 0 2 . . . 02 S;). Since S,!' is in the -
range of R2, there exists Sy R2 Sr. Note by Clause F l and Lemma 7.4, S,!' -f3 Sr. Thus,
we may assume Sy-and hence S{-are in the range of the translation (3. Therefore, it is
enough to consider only those arguments in the range of the translation, so it follows that
($3 P) -2, (P PI . . . Pm) for any terms Pj of the appropriate type.

5. Translated functions convert arguments to be in the range of R3: Suppose P is in the range -
of R3, i .e. , (M R1 N R2 P) . Note that by Lemma 7.4, P =g3 ;i?. Pick any term T such that
(P 03 T) is well-typed. By the definition of 43,

Since (& 0 2 P) is in the range of R2, by Clause F5 there exists a To in the range of R2 such
that

((A 0 2 P) 0 2 T) =g ((A 0 2 P) 0 2 To) (2)

Pick any S R2 To (we know such an S exists since To is in the range of R2). Since S R2 3,
by Lemma 7.4, 3 =& To. Therefore,

- -
(41 0 2 P 02 To) =R (& 0 2 0 2 TO)

.g (& 0 2 % o2 3)

-f3 F ((4 l M) S)

where the last line follows from Clause F3. Now by Clause F5, there is an So in the range of
R1 such that ((41 2) S) zg2 ((41 z) So). Pick Q such that Q R1 So; then by Lemma 7.4, -
Q =z2 So. Thus,

((41 z) SO) =g2 ((41 z) 8) =f2 (iM)
where the last observational congruence follows from Clause F3. Thus, since (3 is fully
abstract by Theorem 7.5,

Putting together Equations 1-6, we arrive at the fact that

- - -
(P 03 T) =& (& a2 2 0 2 Q) E& (P O3 Q) .

-
Since is in the range of R3, we are done.

6. Operational extensionality: Suppose Mi RI Ni R;' Pi and PO $& PI. By Lemma 7.4,
No f z2 Nl and hence Mo f f, M I . Since L1 is operationally extensional, there exist Qi with
(Mo Q1. . . Q i) +o (MI Q1. . . & I) . Thus,

where S a1 S' = S) St). Note that by Clause F2,

(41 (Ni a)) $0 (42 (K a2 ((Z e2 Pi) a2 6))) -& (43 (pi a3 Q?))

In general,
(91 (Ni '1 Q1 v

Thus,
A

(43 (Po a3 Q? a3 . . . a3 6)) 7% (43 (Pl a3 Q1 a3 - - - a3 6))
and Clause F6 now follows from the fact that Q̂ , are in the range of R3.

This completes the verification of each part and hence the proof. .
7.3 Distinctions made by functional translations

The translations of Sections 3 and 5 demonstrate that call-by-value and lazy PCF are "equivalent"
under the notion of functional translation: each can indeed be seen to be functional, when the
observations of the two languages are chosen to be numerals and termination. Call-by-name PCF
can also be functionally translated into call-by-value-and by the Theorem 7.6, into lazy PCF as
well-as long as specify what "termination" means in call-by-name PCF. Here, the correct choice
is to say that all terms of higher-type terminate under the call-by-name semantics; choosing this
as our meaning of termination does not change the observational approximation relation Cname,
even though the call-by-name interpreter given above does not really terminate on all terms of
higher-type.

Nevertheless, call-by-name PCF is strictly less expressive (under the notion of functional trans-
lations) than either call-by-value or lazy PCF. For definiteness, we prove that call-by-name cannot
be translated to call-by-value.

Theorem 7.7 There is no functional translation from call-by-value to call-by-name PCF.

Proof: Suppose M H .%f is a functional translation with projections 4" and relations Ru. Let R1
and R2 be divergent call-by-value PCF terms of types (L -+ L) and L respectively. Note that
fil Xx.R2. Thus, by Theorem 7.5,

- -
01 f name AX- 02-

-
However, by the definition of functional - translation, (4 ((4'" Ax. R2) N)) for any closed N
diverges. Similarly, (4 ((q5L'L R1) N)) diverges. By Clause F4 of the definition of functional
translation, -

(4 ((4"'" AX - 02) N)) =name ((~5702) F N 0)
for any terms Pi and Q;. Similarly,

Therefore, since both XXTR~ and 6 diverge when applied to any arguments, both are call-by-name
observationally congruent to R. Thus,

- -
R1 AX. R2

This is a contradiction, so there can be no functional translation from call-by-value to call-by-name
PCF..

Riecke-Fully Abstract Translations between Functional Languages

8 Conclusion

Letting L1 5 L2 denote the proposition that there is a functional translation from L1 to La, and
L1 N L2 denote L1 5 L2 and L2 5 L1, the main results of the paper may be summarized in
symbols as follows:

Call-by-name PCF < Call-by-value PCF N Lazy PCF

It seems quite likely that other fully abstract translations exist between other functional languages.
Indeed, although we have not proven it here, there is a well-structured translation from the untyped
call-by-value A-calculus to the untyped lazy A-calculus. This translation uses a fairly natural
modification of the retractions in the call-by-value to lazy case. The proof relies on two models:
the fully abstract model for the untyped lazy A-calculus [I, 19, 201, and the fully abstract model
for the unt yped call-by-value A-calculus composed of lifted, strict continuous functions (Felleisen
and Sitaram, personal communication). Instead of logical relations, we use inclusive predicates.
This example should provide clues for adding general recursive types, since untyped languages are
essentially languages with one recursive type; it should also provide clues for extending the language
with sums and products.

All three of the languages considered here incorporate parallel conditional. Of course, we
would like sequential fully abstract translations as well, e.g., from sequential call-by-value PCF
to sequential lazy PCF. We believe our methods will carry over to this problem, albeit carried
out directly on the language instead of through the use of models. Extending the languages with
richer type structures or other features, such as those captured by monads [17, 181, would also be
interesting.

We have only briefly discussed how the notion of functional translations leads to a, definition of
expressiveness. Proving other algebraic properties beyond composition for functional translations
would be a good start. Also, the definition of functional translation may, on further insight,
be too restrictive. In particular, Clause F4, which posits that the projections functions behave
generically, seems very restrictive. It may well be that a less restrictive definition would still rule
out godelnumbering translations. \Ve leave this question open as well.

Acknowledgments

I especially thank Albert Meyer for the suggestion of this problem and many productive conversa-
tions. I also thank Samson Abramsky, Val Breazu-Tannen, Stavros Cosmadakis, Matthias Felleisen,
Carl Gunter, Eugenio Moggi, and Gordon Plotkin for helpful discussions, and Michael Ernst, Lalita
Jategaonkar, Trevor Jim, Arthur Lent, Ramesh Subrahmanyam, and David Wald for comments on
drafts of this paper.

References

[l] Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor, Research Topics in
Functional Programming, pages 65-117. Addison-Wesley, 1990.

[2] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in Logic. North-Holland, 198 1. Revised Edition, 1984.

[3] Bard Bloom. Can LCF be topped? In Proceedings, Third Annual Symposium on Logic in
Computer Science, pages 282-295. IEEE, 1988.

[4] Bard Bloom. Can LCF be topped? Flat lattice models of typed A-calculus. Information and
Computation, 87:264-301, 1990.

[5] Bard Bloom and Jon G. Riecke. LCF should be lifted. In Teodor Rus, editor, Proc. Conf.
Algebraic Methodology and Software Technology, pages 133-136. Department of Computer
Science, University of Iowa, 1989.

[6] Stavros S. Cosmadakis, Albert R. Meyer, and Jon G. Riecke. Completeness for typed lazy
inequalities (preliminary report). In Proceedings, Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 312-320, 1990.

[7] Matthias Felleisen. On the expressive power of programming languages. In Proc. of European
Symp. on Programming, volume 432 of Lect. Notes in Computer Sci., pages 134-151. Springer-
Verlag, 1990. Expanded version to appear in Science of Computer Programming.

[8] Harvey Friedman. Equality between functionals. In Rohit Parikh, editor, Logic Colloquium
'73, volume 453 of Lect. Notes in Math., pages 22-37. Springer-Verlag, 1975.

[9] Carl A. Gunter. Structures and techniques for the semantics of programming languages.
Unpublished manuscript, University of Pennsylvania, January 1991.

[lo] Carl A. Gunter and Dana S. Scott. Semantic domains. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 633-674. Elsevier, 1990.

[ll] Albert R. Meyer. Semantical paradigms: Notes for an invited lecture, with two appendices
by Stavros S. Cosmadakis. In Proceedings, Third Annual Symposium on Logic in Computer
Science, pages 236-255. IEEE, 1988.

[12] Robin Milner. Fully abstract models of the typed lambda calculus. Theoretical Computer Sci.,
4:l-22, 1977.

[13] John C. Mitchell. Lisp is not universal (summary). Unpublished manuscript, AT&T Bell
Laboratories, August 1986.

[14] John C. Mitchell. Type systems for programming languages. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 365-458. Elsevier, 1990.

[15] John C. Mitchell. On abstraction and the expressive power of programming languages. In
Theoretical Aspects of Computer Software, Lect. Notes in Computer Sci., 1991. To appear.

[16] Eugenio Moggi. The Partial Lambda Calculus. PhD thesis, University of Edinburgh, 1988.

[17] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings, Fourth Annual
Symposium on Logic in Computer Science, pages 14-23. IEEE, 1989.

[18] Eugenio Moggi. Notions of computation and monads. Information and Control, 93:55-92,
1991.

3 0 Riecke-Fully Abstract Translations between Functional Languages

[19] Chih-Hao Luke Ong. Fully abstract models of the lazy lambda calculus. In 2gth Annual
Symposium o n Foundations of Computer Science, pages 368-376. IEEE, 1988.

[20] Chih-Hao Luke Ong. The Lazy Lambda Calculus: A n Investigation into the Foundations of
Functional Programming. PhD thesis, Imperial College, University of London, 1988.

[21] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Sci.,
1:125-159, 1975.

[22] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer Sci.,
5:223-257, 1977.

[23] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus Univ., Computer Science Dept., Denmark, 1981.

[24] Gordon D. Plotkin. Notes on completeness of the full continuous type hierarchy. Unpublished
manuscript, Massachusetts Institute of Technology, November 1982.

[25] Jon G. Riecke. A complete and decidable proof system for call-by-value equalities (preliminary
report). In M. S. Paterson, editor, Automata, Languages and Programming: 1 rth International
Colloquium, volume 443 of Lect. Notes i n Computer Sci., pages 20-31. Springer-Verlag, 1990.

[26] Jon G. Riecke. Fully abstract translations between functional languages (preliminary report).
In Conference Record of the Eighteenth Annual ACM Symposium on Principles of Progmmming
Languages, pages 245-254. ACM, 1991.

[27] Jon G. Riecke. The Logic and Expressibility of Simply-Typed Call-by-Value and Lazy Lan-
guages. PhD thesis, Massachusetts Institute of Technology, 1991.

[28] V.Yu. Sazonov. Expressibility of functions in D. Scott's LCF language. Algebra i Logika,
15:308-330, 1976. Russian.

[29] Helmut Schwichtenberg. Complexity of normalization in the pure typed lambda-calculus. In
A.S. Troelstra and D. van Dalen, editors, The L.E.J. Brouwer Centenary Symposium, pages
453-457. North Holland, 1982.

[30] Dana Scott. A type theoretical alternative to CUCH, ISWIM, OWHY. Unpublished
manuscript, Oxford University, 1969.

[31] Ehud Shapiro. Separating concurrent languages with categories of language embeddings. In
Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, 1991.

[32] Kurt Sieber. Message to types@theory.lcs.rnit.edu electronic mail forum, June 1989.

[33] Kurt Sieber. Relating full abstraction results for different programming languages. In Founda-
tions of Software Technology and Theoretical Computer Science, Bangulore, India, December
1990.

[34] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations 11: Full abstraction for
models of control. In Proceedings of the 1990 ACM Conference o n Lisp and Functional Pro-
gramming, pages 161-175. ACM, 1990.

[35] Dorai Sitaram and Matthias Felleisen. Modeling continuations without continuations. In
Confemnce Record of the Eighteenth Annual ACM Symposium on Principles of Programming
Languages, pages 185-196. ACM, 1991.

1361 Richard Statman. The typed A-calculus is not elementary recursive. Theoretical Computer
Sci., 9:73-81, 1979.

[37] Richard Statman. Logical relations in the typed A-calculus. Information and Control, 65:86-97,
1985.

[38] Alan Stoughton. Fully Abstract Models of Progamming Languages. Research Notes in Theo-
retical Computer Science. Pitman/ Wiley, 1988. Revision of Ph.D thesis, Dept . of Computer
Science, Univ. Edinburgh, Report No. CST-40-86, 1986.

[39] Bent Thomsen. A calculus of higher order communicating systems. In Conference Record of the
Sixteenth Annual A C M Symposium on Principles of Progmrnming Languages, pages 143-154.
ACM, 1989.

	Fully Abstract Translations Between Functional Languages
	Recommended Citation

	Fully Abstract Translations Between Functional Languages
	Abstract
	Comments

	tmp.1199380984.pdf.fsfS6

