2,986 research outputs found

    All the World's a (Hyper)Graph: A Data Drama

    Get PDF
    We introduce Hyperbard, a dataset of diverse relational data representationsderived from Shakespeare's plays. Our representations range from simple graphscapturing character co-occurrence in single scenes to hypergraphs encodingcomplex communication settings and character contributions as hyperedges withedge-specific node weights. By making multiple intuitive representationsreadily available for experimentation, we facilitate rigorous representationrobustness checks in graph learning, graph mining, and network analysis,highlighting the advantages and drawbacks of specific representations.Leveraging the data released in Hyperbard, we demonstrate that many solutionsto popular graph mining problems are highly dependent on the representationchoice, thus calling current graph curation practices into question. As anhomage to our data source, and asserting that science can also be art, wepresent all our points in the form of a play.<br

    Relationship of Weed Control and Soil pH to No-Tillage Corn Yields

    Get PDF
    Atrazine and simazine are used for selective control of a broad spectrum of weeds in corn. Over 80% of the U.S. corn production is treated with one or the other of these two s-triazine herbicides. In Kentucky they are used annually on over 800,000 acres of corn, including over 200,000 acres of no-tillage corn. When added to the soil these compounds are ultimately degraded to non-phytotoxic compounds. The rate of degradation is dependent upon the physical, chemical, and biological properties of the soil. Although atrazine and simazine are chemically similar, simazine is considered to degrade slightly slower than atrazine after application to the soil and as a result will remain in the soil for a longer period of time

    Classifying Annihilating-Ideal Graphs of Commutative Artinian Rings

    Get PDF
    In this article we investigate the annihilating-ideal graph of a commutative ring, introduced by Behboodi and Rakeei in [BR11a]. Our main goal is to determine which algebraic properties of a ring are reflected in its annihilating-ideal graph. We prove that, for artinian rings, the annihilating-ideal graph can be used to determine whether the ring in question is a PIR or, more generally, if it is a dual ring. Moreover, with one trivial exception, the annihilating-ideal graph can distinguish between PIRs with different ideal lattices. In addition, we explore new techniques for classifying small annihilating-ideal graphs. Consequently, we completely determine the graphs with 6 or fewer vertices which can be realized as the annihilating-ideal graph of a commutative ring

    Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen

    Get PDF
    We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter

    Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    Full text link
    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming `tungsten bronzes'. Similar optical effects are observed upon removing oxygen from WO_3, although the electronic properties are slightly different. Here we present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. Next, this was extended to a study of fractional doping in the Na_xWO_3 system (0 < x < 1). A linear variation in cell parameter, and a systematic change in the position of the Fermi level up into the valence band was observed with increasing x. In the underdoped WO_3-x system however, the Fermi level undergoes a sudden jump into the conduction band at around x = 0.2. Lastly, three compounds of a layered WO_4&#215;a,wdiaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO_3 compound which relate well to experimental UV-visible spectroscopy results.Comment: 12 pages, 16 figure

    Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    Get PDF
    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184

    Elemental abundances of major elements in the solar wind as measured in Genesis targets and implications on solar wind fractionation

    Get PDF
    The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program. V. S. Heber thanks NASA for financial support. This work was supported by grants from the NASA Laboratory Analysis of Returned Samples (LARS) program (NASA LARS 80NSSC17K0025 to D. S. Burnett and A. J. G. Jurewicz). R. Wieler acknowledges the hospitality of Caltech's Division of Geologial and Planetary Sciences during his stay in Pasadena.We present elemental abundance data of C, N, O, Na, Mg, Al, Ca, and Cr in Genesis silicon targets. For Na, Mg, Al, and Ca, data from three different SW regimes are also presented. Data were obtained by backside depth profiling using Secondary Ion Mass Spectrometry. The accuracy of these measurements exceeds those obtained by in-situ observations; therefore the Genesis data provide new insights into elemental fractionation between Sun and solar wind, including differences between solar wind regimes. We integrate previously published noble gas and hydrogen elemental abundances from Genesis targets, as well as preliminary values for K and Fe. The abundances of the solar wind elements measured display the well-known fractionation pattern that correlates with each element's First Ionization Potential (FIP). When normalized either to spectroscopic photospheric solar abundances or to those derived from CI-chondritic meteorites, the fractionation factors of low-FIP elements (K, Na, Al, Ca, Cr, Mg, Fe) are essentially identical within uncertainties, but the data are equally consistent with an increasing fractionation with decreasing FIP. The elements with higher FIPs between ~11 and ~16 eV (C, N, O, H, Ar, Kr, Xe) display a relatively well-defined trend of increasing fractionation with decreasing FIP, if normalized to modern 3D photospheric model abundances. Among the three Genesis regimes, the Fast SW displays the least elemental fractionation for almost all elements (including the noble gases) but differences are modest: for low-FIP elements the precisely measured Fast-Slow SW variations are less than 3%.PostprintPeer reviewe

    Superconducting gap anisotropy of LuNi2B2C thin films from microwave surface impedance measurements

    Full text link
    Surface impedance measurements of LuNi2B2C superconducting thin films as a function of temperature have been performed down to 1.5 K and at 20 GHz using a dielectric resonator technique. The magnetic penetration depth closely reproduces the standard B.C.S. result, but with a reduced value of the energy gap at low temperature. These data provide evidence for an anisotropic s-wave character of the order parameter symmetry in LuNi2B2C. From the evaluation of the real part of complex conductivity, we have observed constructive (type II) coherence effects in the electromagnetic absorption below Tc.Comment: 15 pages, 4 figure

    Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed dd- and s-wave superconductor

    Full text link
    Based on the linearized Eilenberger equations, the upper critical field (Hc2)(H_{c2}) of mixed d- and s-wave superconductors has been microscopically studied with an emphasis on the competing effects of mass anisotropy and spin Zeeman coupling. We find the mass anisotropy always enhance Hc2H_{c2} while the Zeeman interaction suppresses Hc2H_{c2}. As required by the thermodynamics, we find Hc2H_{c2} is saturated at zero temperature. We compare the theoretical calculations with recent experimental data of YBa2_{2}Cu3_{3}O7−+AFw−delta_{7-+AFw-delta}.Comment: To appear in PRB in Feb. 200
    • …
    corecore