7 research outputs found

    Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria11The nucleotide sequence data of the mLIP1 cDNA for lipoic acid synthase of the mouse were deposited in the DDBJ, EMBL and GenBank nucleotide sequence databases with the accession number AB057731.

    Get PDF
    AbstractLipoic acid is a coenzyme essential to the activity of enzymes such as pyruvate dehydrogenase, which play important roles in central metabolism. However, neither the enzymes responsible for biosynthesis nor the biosynthetic event of lipoic acid has been reported in mammalian cells. In this study, a mouse mLIP1 cDNA for lipoic acid synthase has been identified. We have shown that the cDNA encodes a lipoic acid synthase by its ability to complement a mutant of Escherichia coli defective in lipoic acid synthase and that mLIP1 is targeted into the mitochondria. These findings suggest that mammalian cells are able to synthesize lipoic acid in mitochondria

    Effect of Light Period Longer than Critical Day Length after Heading on the Growth and Development of Rice under a Controlled Environment

    No full text

    Bioluminescence of (<i>R</i>)-Cypridina Luciferin with <i>Cypridina</i> Luciferase

    No full text
    Cypridina luciferin (CypL) is a marine natural product that functions as the luminous substrate for the enzyme Cypridina luciferase (CypLase). CypL has two enantiomers, (R)- and (S)-CypL, due to its one chiral center at the sec-butyl moiety. Previous studies reported that (S)-CypL or racemic CypL with CypLase produced light, but the luminescence of (R)-CypL with CypLase has not been investigated. Here, we examined the luminescence of (R)-CypL, which had undergone chiral separation from the enantiomeric mixture, with a recombinant CypLase. Our luminescence measurements demonstrated that (R)-CypL with CypLase produced light, indicating that (R)-CypL must be considered as the luminous substrate for CypLase, as in the case of (S)-CypL, rather than a competitive inhibitor for CypLase. Additionally, we found that the maximum luminescence intensity from the reaction of (R)-CypL with CypLase was approximately 10 fold lower than that of (S)-CypL with CypLase, but our kinetic analysis of CypLase showed that the Km value of CypLase for (R)-CypL was approximately 3 fold lower than that for (S)-CypL. Furthermore, the chiral high-performance liquid chromatography (HPLC) analysis of the reaction mixture of racemic CypL with CypLase showed that (R)-CypL was consumed more slowly than (S)-CypL. These results indicate that the turnover rate of CypLase for (R)-CypL was lower than that for (S)-CypL, which caused the less efficient luminescence of (R)-CypL with CypLase
    corecore