10 research outputs found

    The Mechanism for Primordial Germ-Cell Migration Is Conserved between Japanese Eel and Zebrafish

    Get PDF
    Primordial germ cells (PGCs) are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4) are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica) embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio) for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders)

    Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes

    Get PDF
    This review introduces surrogate production as a new technique for fish-seed production in aquaculture. Surrogate production in fish is a technique used to obtain the gametes of a certain genotype through the gonad of another genotype. It is achieved by inducing germ-line chimerism between different species during early development. Primordial germ cells (PGCs) are the key material of this technique to induce germ-line chimera. In several species, it has been reported that PGCs differentiated from the blastomeres inherited some maternally supplied mRNA located in the terminal regions of the early cleavage furrows. PGCs from donor species (or strains) are isolated and transplanted into host species to induce the germ-line chimera. Four methods for inducing germ-line chimera are described: blastomere transplantation, blastoderm-graft transplantation, transplantation of PGC from the genital ridge, and transplantation visualised PGC with GFP fluorescence. Several problems preventing the successful induction of germ-line chimera in various fish species are discussed. Surrogate production, however, opens the possibility of efficient fish-seed production and effective breeding and transfer of biodiversity to an aquaculture strain. Conservation and efficient utilisation of genetic resources will be achieved through surrogate production combined with the cryopreservation of PGCs

    Visualization and motility of primordial germ cells using green fluorescent protein fused to 3'UTR of common carp nanos-related gene

    Get PDF
    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. We previously visualized the PGCs of several teleostean embryos by injecting RNA synthesized from constructs encoding green fluorescent protein (GFP) fused to the 3'UTR of the zebrafish (Danio rerio) nanos1 gene (nos1). However, this technique was not always suitable for visualizing PGCs in embryos from all teleost species. In this study, we compared the visualization of PGCs in common carp (Cyprinus carpio) embryos using two artificial constructs containing GFP fused to the 3'UTR of nanos from either common carp or zebrafish. Visualization was better using GFP fused to the 3'UTR of the nanos gene from common carp, compared with that from zebrafish. The visualized PGCs successfully migrated toward the gonadal ridge after transplantation into goldfish host embryos, suggesting that they maintained normal migratory motility. These techniques could be useful for the production of inter-specific germline chimeras using common carp donor PGCs

    TALEN-Mediated Gene Editing of slc24a5 (Solute Carrier Family 24, Member 5) in Kawakawa, Euthynnus affinis

    No full text
    Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus

    TALEN-Mediated Gene Editing of <i>slc24a5</i> (Solute Carrier Family 24, Member 5) in Kawakawa, <i>Euthynnus affinis</i>

    No full text
    Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus
    corecore