50 research outputs found

    Reconstructing Roma History from Genome-Wide Data

    Get PDF
    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.Országos Tudományos Kutatási Alapprogramok (OTKA K 103983)Országos Tudományos Kutatási Alapprogramok (OTKA 73430)National Science Foundation (U.S.) (HOMINID grant 1032255)National Institutes of Health (U.S.) (grant GM100233

    Diagnostic accuracy of a three-gene Mycobacterium tuberculosis host response cartridge using fingerstick blood for childhood tuberculosis: a multicentre prospective study in low-income and middle-income countries

    Get PDF
    BACKGROUND: Childhood tuberculosis remains a major cause of morbidity and mortality in part due to missed diagnosis. Diagnostic methods with enhanced sensitivity using easy-to-obtain specimens are needed. We aimed to assess the diagnostic accuracy of the Cepheid Mycobacterium tuberculosis Host Response prototype cartridge (MTB-HR), a candidate test measuring a three-gene transcriptomic signature from fingerstick blood, in children with presumptive tuberculosis disease. METHODS: RaPaed-TB was a prospective diagnostic accuracy study conducted at four sites in African countries (Malawi, Mozambique, South Africa, and Tanzania) and one site in India. Children younger than 15 years with presumptive pulmonary or extrapulmonary tuberculosis were enrolled between Jan 21, 2019, and June 30, 2021. MTB-HR was performed at baseline and at 1 month in all children and was repeated at 3 months and 6 months in children on tuberculosis treatment. Accuracy was compared with tuberculosis status based on standardised microbiological, radiological, and clinical data. FINDINGS: 5313 potentially eligible children were screened, of whom 975 were eligible. 784 children had MTB-HR test results, of whom 639 had a diagnostic classification and were included in the analysis. MTB-HR differentiated children with culture-confirmed tuberculosis from those with unlikely tuberculosis with a sensitivity of 59·8% (95% CI 50·8–68·4). Using any microbiological confirmation (culture, Xpert MTB/RIF Ultra, or both), sensitivity was 41·6% (34·7–48·7), and using a composite clinical reference standard, sensitivity was 29·6% (25·4–34·2). Specificity for all three reference standards was 90·3% (95% CI 85·5–94·0). Performance was similar in different age groups and by malnutrition status. Among children living with HIV, accuracy against the strict reference standard tended to be lower (sensitivity 50·0%, 15·7–84·3) compared with those without HIV (61·0%, 51·6–69·9), although the difference did not reach statistical significance. Combining baseline MTB-HR result with one Ultra result identified 71·2% of children with microbiologically confirmed tuberculosis. INTERPRETATION: MTB-HR showed promising diagnostic accuracy for culture-confirmed tuberculosis in this large, geographically diverse, paediatric cohort and hard-to-diagnose subgroups. FUNDING: European and Developing Countries Clinical Trials Partnership, UK Medical Research Council, Swedish International Development Cooperation Agency, Bundesministerium für Bildung und Forschung; German Center for Infection Research (DZIF)

    The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress.

    No full text
    The family of ADAM (a disintegrin and metalloproteinase) proteins has been implicated in tumor initiation and progression. ADAM17/tumor necrosis factor-α (TNFα)-converting enzyme (TACE) has been initially recognized to release TNFα as well as its receptors (TNFRs) from the membrane. ADAM17, TNFα and TNFR have been found upregulated in cancer patients, although the underlying mechanisms remain largely unknown. As hypoxia is a hallmark of cancer that can lead to severe stress conditions accumulating in endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), we investigated the role of these stress conditions in the regulation of ADAM17 and release of TNFR1.We found that severe hypoxia induced ADAM17 expression and activity. Although hypoxia-inducible factor 1α (HIF1α) was important to maintain basal ADAM17 mRNA levels during moderate hypoxia, it was not sufficient to induce ADAM17 levels under severe hypoxia. Instead, we found that ADAM17 induction by severe hypoxia can be mimicked by ER stressors such as Thapsigargin and occurs as a consequence of the activation of the PERK/eIF2α/ATF4 and activating transcription factor 6 (ATF6) arms of UPR in several tumor cell lines. ADAM17 expression was also increased in xenografts displaying ER stress because of treatment with the vascular endothelial growth factor (VEGF) inhibitory antibody Bevacizumab. Additionally, severe hypoxia and ER stress activated ADAM17 and ectodomain shedding of TNFR1 involving mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS). Collectively, these results show that ADAM17 is a novel UPR-regulated gene in response to severe hypoxia and ER stress, which is actively involved in the release of TNFR1 under these conditions. These data provide a novel link between severe hypoxic stress conditions and inflammation in the tumor environment
    corecore