3,935 research outputs found

    On Generalized Additive Models for Representation of Solar EUV Irradiance

    Get PDF
    In the context of space weather forecasting, solar EUV irradiance specification is needed on multiple time scales, with associated uncertainty quantification for determining the accuracy of downstream parameters. Empirical models of irradiance often rely on parametric fits between irradiance in several bands and various solar indices. We build upon these empirical models by using Generalized Additive Models (GAMs) to represent solar irradiance. We apply the GAM approach in two steps: (a) A GAM is fitted between FISM2 irradiance and solar indices F10.7, Revised Sunspot Number, and the Lyman-α solar index. (b) A second GAM is fit to model the residuals of the first GAM with respect to FISM2 irradiance. We evaluate the performance of this approach during Solar Cycle 24 using GAMs driven by known solar indices as well as those forecasted 3 days ahead with an autoregressive modeling approach. We demonstrate negligible dependence of performance on solar cycle and season, and we assess the efficacy of the GAM approach across different wavelengths

    Rapport‐building in multiple interviews of children

    Get PDF
    AbstractRapport‐building is key in child investigative interviews, however, recommendations of how to build rapport differ. Additionally, rapport in more complex situations: when a child is interviewed repeatedly or requires separate rapport building have not been studied. This research examined the UK's ‘Achieving Best Evidence’ guidelines for rapport‐building, which recommend conducting a neutral discussion, compared with a control condition and a separate rapport‐building session for first interviews on children's recall and well‐being (measured by state anxiety and rapport questionnaires). For second and third interviews, additional full rapport‐building sessions were compared to shortened or no rapport‐building conditions. No significant differences in children's (N = 107) recall or well‐being were found across rapport‐building conditions for all interviews. We conclude that for children who have experienced non‐traumatic events, the inclusion of a neutral discussion rapport‐building phase may not be any more beneficial for children than conducting a friendly interview

    Social flocculation in plant–animal worms

    Get PDF
    Individual animals can often move more safely or more efficiently as members of a group. This can be as simple as safety in numbers or as sophisticated as aerodynamic or hydrodynamic cooperation. Here, we show that individual plant–animal worms (Symsagittifera roscoffensis) can move to safety more quickly through flocculation. Flocs form in response to turbulence that might otherwise carry these beach-dwelling worms out to sea. They allow the worms to descend much more quickly to the safety of the substrate than single worms could swim. Descent speed increases with floc size such that larger flocs can catch up with smaller ones and engulf them to become even larger and faster. To our knowledge, this is the first demonstration of social flocculation in a wild, multicellular organism. It is also remarkable that such effective flocculation occurs where the components are comparatively large multicellular organisms organized as entangled ensembles

    Laser cooling of a nanomechanical resonator mode to its quantum ground state

    Full text link
    We show that it is possible to cool a nanomechanical resonator mode to its ground state. The proposed technique is based on resonant laser excitation of a phonon sideband of an embedded quantum dot. The strength of the sideband coupling is determined directly by the difference between the electron-phonon couplings of the initial and final states of the quantum dot optical transition. Possible applications of the technique we describe include generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex

    Photochemistry in the arctic free troposphere: Ozone budget and its dependence on nitrogen oxides and the production rate of free radicals

    Get PDF
    Abstract. Local ozone production and loss rates for the arctic free troposphere (58–85 ◦ N, 1–6 km, February–May) during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 km layer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratios up to ∼300 pptv in February and for NOx mixing ratio

    Energy bands, conductance and thermoelectric power for ballistic electrons in a nanowire with spin-orbit interaction

    Full text link
    We calculated the effects of spin-orbit interaction (SOI) on the energy bands, ballistic conductance and the electron-diffusion thermoelectric power of a nanowire by varying the temperature, electron density and width of the wire. The potential barriers at the edges of the wire are assumed to be very high. A consequence of the boundary conditions used in this model is determined by the energy band structure, resulting in wider plateaus when the electron density is increased due to larger energy-level separation as the higher subbands are occupied by electrons. The nonlinear dependence of the transverse confinement on position with respect to the well center excludes the "pole-like feature" in the conductance which is obtained when a harmonic potential is employed for confinement. At low temperature, the electron diffusion thermoelectric power increases linearly with T but deviates from the linear behavior for large values of T.Comment: Updated corrected version of the original submissio
    corecore