27 research outputs found

    Salt Marsh and Fringing Oyster Reef Transgression in a Shallow Temperate Estuary: Implications for Restoration, Conservation and Blue Carbon

    Get PDF
    The importance of intertidal estuarine habitats, like salt marsh and oyster reef, has been well established, as has their ubiquitous loss along our coasts with resultant forfeiture of the ecosystem services they provide. Furthering our understanding of how these habitats are evolving in the face of anthropogenic and climate driven changes will help improve management strategies. Previous work has shown that the growth and productivity of both oyster reefs and salt marshes are strongly linked to elevation in the intertidal zone (duration of aerial exposure). We build on that research by examining the growth of marsh-fringing oyster reefs at yearly to decadal time scales and examine movement of the boundary between oyster reef and salt marsh at decadal to centennial time scales. We show that the growth of marsh-fringing reefs is strongly associated to the duration of aerial exposure, with little growth occurring below mean low water and above mean sea level. Marsh-shoreline movement, in the presence or absence of fringing oyster reefs, was reconstructed using transects of sediment cores. Carbonaceous marsh sediments sampled below the modern fringing oyster reefs indicate that marsh shorelines within Back Sound, North Carolina are predominantly in a state of transgression (landward retreat), and modern oyster-reef locations were previously occupied by salt marsh within the past two centuries. Cores fronting transgressive marsh shorelines absent fringing reefs sampled thinner and less extensive carbonaceous marsh sediment than at sites with fringing reefs. This indicates that fringing reefs are preserving carbonaceous marsh sediment from total erosion as they transgress and colonize the exposed marsh shoreline making marsh sediments more resistant to erosion. The amount of marsh sediment preservation underneath the reef scales with the reef’s relief, as reefs with the greatest relief were level with the marsh platform, preserving a maximum amount of carbonaceous sediments during transgression by buffering the marsh from erosional processes. Thus, fringing oyster reefs not only have the capacity to shelter shorelines but, if located at the ideal tidal elevation, they also keep up with accelerating sea-level rise and cap carbonaceous sediments, protecting them from erosion, as reefs develop along the marsh

    Evidence of exceptional oyster-reef resilience to fluctuations in sea level

    Get PDF
    Ecosystems at the land–sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10–30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef (Crassostrea virginica) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs (n = 3) constructed in 1997 and 2000, young reefs (n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and restoration

    Oyster reefs as carbon sources and sinks

    Get PDF
    Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs’ role as sources (+) or sinks (-) of atmospheric CO2. While CO2 release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO2 drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO2 (7.1 ± 1.2 MgC ha-1 yr-1 (m ± s.e.)) resulting from predominantly carbonate deposition, whereas shallow subtidal reefs (-1.0 ± 0.4 MgC ha-1 yr-1) and saltmarsh-fringing reefs (-1.3 ± 0.4 MgC ha-1 yr-1) were dominated by organic-carbon-rich sediments and functioned as net carbon sinks (on par with vegetated coastal habitats). These landscape-level differences reflect gradients in shellfish growth, survivorship and shell bioerosion. Notably, down-core carbon concentrations in 100- to 4000-year-old reefs mirrored experimental-reef data, suggesting our results are relevant over centennial to millennial scales, although we note that these natural reefs appeared to function as slight carbon sources (0.5 ± 0.3 MgC ha-1 yr-1). Globally, the historical mining of the top metre of shellfish reefs may have reintroduced more than 400 000 000 Mg of organic carbon into estuaries. Importantly, reef formation and destruction do not have reciprocal, counterbalancing impacts on atmospheric CO2 since excavated organic material may be remineralized while shell may experience continued preservation through reburial. Thus, protection of existing reefs could be considered as one component of climate mitigation programmes focused on the coastal zone

    Salt marsh shoreline geomorphology influences the success of restored oyster reefs and use by associated fauna

    Get PDF
    Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small-fetch, gradual-sloped shoreline), “ramp” (large-fetch, gradual-sloped shoreline), and “scarp” (large-fetch, steep-sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small-fetch, gradual-sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat-related functions (prey availability and refuge) already present along existing salt marsh borders

    The role of beach state and the timing of pre-storm surveys in determining the accuracy of storm impact assessments

    Get PDF
    Dune erosion principally occurs when water level exceeds the elevation of the beach and predicting erosion is progressively becoming more important for management as coastal populations increase, sea level rises, and storms become more powerful. This study assesses storm impacts using a simple model from Stockdon et al. (2007) configured with oceanographic information from the ADCIRC + SWAN model and frequently collected beach profiles. We applied that model to barrier islands in North Carolina including: Core Banks with a more dissipative beach morphology and Shackleford Banks and Onslow Beach with intermediate beach morphologies. The study periods captured 10 events where wave collision with the dunes and/or overwash were either predicted or observed, including large multiple-day events caused by hurricanes and smaller events caused by onshore winds and high tide. Comparing model output with a time series of beach photographs shows the predictive power and sensitivity of the model was consistently high at the Core Banks Site with its wide and low-gradient beach, high-elevation dunes (2.58 m), and high resistance to overwash. Model predictive power and sensitivity was lowest at the Shackleford Banks Site because frequent and large changes to beach slope and intermediate dune elevation (0.54–1.25 m) caused small variations of modeled total water level to either overpredict or underpredict storm impacts. In addition, storm impacts were always overpredicted during hurricanes at the Shackleford Banks Site, which was likely due to storm waves decreasing the beach slope from what was measured prior to the event and used as model input. Like Shackleford Banks, the beach slope of the Onslow Beach Site was steep and variable, but the low-elevation dunes (0.24–0.28 m) made resistance to overwash low and the predictive power and sensitivity of the model higher than at the Shackleford Banks Site. Results suggest that storm impacts and the associated potential for dune erosion is predicted more accurately at beaches where the threshold for overwash is high or low because total water level during most events will commonly fall short of or exceed the overwash threshold, respectively. The accuracy of predicting the storm impact regime is sensitive to beach slope. The slope of intermediate beaches is more variable than dissipative beaches and requires frequent measurement if it is to be represented accurately in the model, but this can be impractical and costly even using the latest drone-surveying methods. To maximize the accuracy of predicting storm impacts, intermediate beach morphology should be constrained by surveying at seasonal or yearly time scales and used as input to numerical models that estimate beach slope over short time scales (hours during an event or daily), configured with the latest wave and water-level forecasts

    Living on the Edge: Increasing Patch Size Enhances the Resilience and Community Development of a Restored Salt Marsh

    Get PDF
    Foundation species regulate communities by reducing environmental stress and providing habitat for other species. Successful restoration of biogenic habitats often depends on restoring foundation species at appropriate spatial scales within a suitable range of environmental conditions. An improved understanding of the relationship between restoration scale and environmental conditions has the potential to improve restoration outcomes for many biogenic habitats. Here, we identified and tested whether inundation/exposure stress and spatial scale (patch size) can interactively determine (1) survival and growth of a foundation species, Spartina alterniflora and (2) recruitment of supported fauna. We planted S. alterniflora and artificial mimics in large and small patches at elevations above and below local mean sea level (LMSL) and monitored plant survivorship and production, as well as faunal recruitment. In the first growing season, S. alterniflora plant survivorship and stem densities were greater above LMSL than below LMSL regardless of patch size, while stem height was greatest in small patches below LMSL. By the third growing season, S. alterniflora patch expansion was greater above LMSL than below LMSL, while stem densities were higher in large patches than small patches, regardless of location relative to LMSL. Unlike S. alterniflora, which was more productive above LMSL, sessile marine biota recruitment to mimic plants was higher in patches below LMSL than above LMSL. Our results highlight an ecological tradeoff at ~LMSL between foundation species restoration and faunal recruitment. Increasing patch size as inundation increases may offset this tradeoff and enhance resilience of restored marshes to sea-level rise

    An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex

    Get PDF
    The North American Ice Sheet Complex (NAISC; consisting of the Laurentide, Cordilleran and Innuitian ice sheets) was the largest ice mass to repeatedly grow and decay in the Northern Hemisphere during the Quaternary. Understanding its pattern of retreat following the Last Glacial Maximum is critical for studying many facets of the Late Quaternary, including ice sheet behaviour, the evolution of Holocene landscapes, sea level, atmospheric circulation, and the peopling of the Americas. Currently, the most up-to-date and authoritative margin chronology for the entire ice sheet complex is featured in two publications (Geological Survey of Canada Open File 1574 [Dyke et al., 2003]; ‘Quaternary Glaciations – Extent and Chronology, Part II’ [Dyke, 2004]). These often-cited datasets track ice margin recession in 36 time slices spanning 18 ka to 1 ka (all ages in uncalibrated radiocarbon years) using a combination of geomorphology, stratigraphy and radiocarbon dating. However, by virtue of being over 15 years old, the ice margin chronology requires updating to reflect new work and important revisions. This paper updates the aforementioned 36 ice margin maps to reflect new data from regional studies. We also update the original radiocarbon dataset from the 2003/2004 papers with 1541 new ages to reflect work up to and including 2018. A major revision is made to the 18 ka ice margin, where Banks and Eglinton islands (once considered to be glacial refugia) are now shown to be fully glaciated. Our updated 18 ka ice sheet increased in areal extent from 17.81 to 18.37 million km2, which is an increase of 3.1% in spatial coverage of the NAISC at that time. Elsewhere, we also summarize, region-by-region, significant changes to the deglaciation sequence. This paper integrates new information provided by regional experts and radiocarbon data into the deglaciation sequence while maintaining consistency with the original ice margin positions of Dyke et al. (2003) and Dyke (2004) where new information is lacking; this is a pragmatic solution to satisfy the needs of a Quaternary research community that requires up-to-date knowledge of the pattern of ice margin recession of what was once the world’s largest ice mass. The 36 updated isochrones are available in PDF and shapefile format, together with a spreadsheet of the expanded radiocarbon dataset (n = 5195 ages) and estimates of uncertainty for each interval

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
    corecore