83 research outputs found

    Cost effectiveness of a multi-stage return to work program for workers on sick leave due to low back pain, design of a population based controlled trial [ISRCTN60233560]

    Get PDF
    BACKGROUND: To describe the design of a population based randomized controlled trial (RCT), including a cost-effectiveness analysis, comparing participative ergonomics interventions between 2–8 weeks of sick leave and Graded Activity after 8 weeks of sick leave with usual care, in occupational back pain management. METHODS: DESIGN: An RCT and cost-effectiveness evaluation in employees sick-listed for a period of 2 to 6 weeks due to low back pain. Interventions used are 1. Communication between general practitioner and occupational physician plus Participative Ergonomics protocol performed by an ergonomist. 2. Graded Activity based on cognitive behavioural principles by a physiotherapist. 3. Usual care, provided by an occupational physician according to the Dutch guidelines for the occupational health management of workers with low back pain. The primary outcome measure is return to work. Secondary outcome measures are pain intensity, functional status and general improvement. Intermediate variables are kinesiophobia and pain coping. The cost-effectiveness analysis includes the direct and indirect costs due to low back pain. The outcome measures are assessed before randomization (after 2–6 weeks on sick leave) and 12 weeks, 26 weeks and 52 weeks after first day of sick leave. DISCUSSION: The combination of these interventions has been subject of earlier research in Canada. The results of the current RCT will: 1. crossvalidate the Canadian findings in an different sociocultural environment; 2. add to the cost-effectiveness on treatment options for workers in the sub acute phase of low back pain. Results might lead to alterations of existing (inter)national guidelines

    Does Reduced IGF-1R Signaling in Igf1r+/− Mice Alter Aging?

    Get PDF
    Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/−) on longevity/aging was evaluated in C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry conditions using large sample sizes. Igf1r+/− mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/− mice show reduced IGF-1 signaling. Aged male, but not female Igf1r+/− mice were glucose intolerant, and both genders developed insulin resistance as they aged. Female, but not male Igf1r+/− mice survived longer than wild type mice after lethal paraquat and diquat exposure, and female Igf1r+/− mice also exhibited less diquat-induced liver damage. However, no significant difference between the lifespans of the male Igf1r+/− and wild type mice was observed; and the mean lifespan of the Igf1r+/− females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/− and wild type mice. These data show that the Igf1r+/− mouse is not a model of increased longevity and delayed aging as predicted by invertebrate models with mutations in the insulin/IGF-1 signaling pathway

    TGF-ß Sma/Mab Signaling Mutations Uncouple Reproductive Aging from Somatic Aging

    Get PDF
    Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15–20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-ß signaling pathways. We recently found that the TGF-ß Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS) pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-ß Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-ß Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways

    Phylogeography of Supralittoral Rocky Intertidal Ligia Isopods in the Pacific Region from Central California to Central Mexico

    Get PDF
    Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from 122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition, we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically dynamic region.We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA). We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general, group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to the southernmost portion of mainland.Our results shed light on the phylogenetic relationships of Ligia populations in the study area. This study probably represents the finest-scale phylogeographic examination for any organism to date in this region. Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important biogeographic region

    DAF-12 Regulates a Connected Network of Genes to Ensure Robust Developmental Decisions

    Get PDF
    The nuclear receptor DAF-12 has roles in normal development, the decision to pursue dauer development in unfavorable conditions, and the modulation of adult aging. Despite the biologic importance of DAF-12, target genes for this receptor are largely unknown. To identify DAF-12 targets, we performed chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays. We identified 1,175 genomic regions to be bound in vivo by DAF-12, and these regions are enriched in known DAF-12 binding motifs and act as DAF-12 response elements in transfected cells and in transgenic worms. The DAF-12 target genes near these binding sites include an extensive network of interconnected heterochronic and microRNA genes. We also identify the genes encoding components of the miRISC, which is required for the control of target genes by microRNA, as a target of DAF-12 regulation. During reproductive development, many of these target genes are misregulated in daf-12(0) mutants, but this only infrequently results in developmental phenotypes. In contrast, we and others have found that null daf-12 mutations enhance the phenotypes of many miRISC and heterochronic target genes. We also find that environmental fluctuations significantly strengthen the weak heterochronic phenotypes of null daf-12 alleles. During diapause, DAF-12 represses the expression of many heterochronic and miRISC target genes, and prior work has demonstrated that dauer formation can suppress the heterochronic phenotypes of many of these target genes in post-dauer development. Together these data are consistent with daf-12 acting to ensure developmental robustness by committing the animal to adult or dauer developmental programs despite variable internal or external conditions

    Impact of Age on the Cerebrovascular Proteomes of Wild-Type and Tg-SwDI Mice

    Get PDF
    The structural integrity of cerebral vessels is compromised during ageing. Abnormal amyloid (Aβ) deposition in the vasculature can accelerate age-related pathologies. The cerebrovascular response associated with ageing and microvascular Aβ deposition was defined using quantitative label-free shotgun proteomic analysis. Over 650 proteins were quantified in vessel-enriched fractions from the brains of 3 and 9 month-old wild-type (WT) and Tg-SwDI mice. Sixty-five proteins were significantly increased in older WT animals and included several basement membrane proteins (nidogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, laminin subunit gamma-1 precursor and collagen alpha-2(IV) chain preproprotein). Twenty-four proteins were increased and twenty-one decreased in older Tg-SwDI mice. Of these, increases in Apolipoprotein E (APOE) and high temperature requirement serine protease-1 (HTRA1) and decreases in spliceosome and RNA-binding proteins were the most prominent. Only six shared proteins were altered in both 9-month old WT and Tg-SwDI animals. The age-related proteomic response in the cerebrovasculature was distinctly different in the presence of microvascular Aβ deposition. Proteins found differentially expressed within the WT and Tg-SwDI animals give greater insight to the mechanisms behind age-related cerebrovascular dysfunction and pathologies and may provide novel therapeutic targets

    Associated features in females with an FMR1 premutation

    Get PDF
    Abstract Changes in the fragile X mental retardation 1 gene (FMR1) have been associated with specific phenotypes, most specifically those of fragile X syndrome (FXS), fragile X tremor/ataxia syndrome (FXTAS), and fragile X primary ovarian insufficiency (FXPOI). Evidence of increased risk for additional medical, psychiatric, and cognitive features and conditions is now known to exist for individuals with a premutation, although some features have been more thoroughly studied than others. This review highlights the literature on medical, reproductive, cognitive, and psychiatric features, primarily in females, that have been suggested to be associated with changes in the FMR1 gene. Based on this review, each feature is evaluated with regard to the strength of evidence of association with the premutation. Areas of need for additional focused research and possible intervention strategies are suggested
    corecore