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Abstract 

Rationale 

Heteroatoms are relatively abundant and believed to be bio-resistant in heavy crude oils. 

However, few studies have focused on biodegradation of these heteroatomic compounds. 

Methods 

The heteroatoms, especially N1-species, in a blank crude oil and three treated oils 

co-incubated in the anaerobic sulfate-reducing bacteria (SRB), nitrate-reducing bacteria 

(NRB) and fermentative consortia (FC) cultures were detected by negative-ion electrospray 

ionization (ESI) coupled to high-field Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR MS).  

Results 

The relative abundance of N1-species in the three treated oils decreased, while the relative 

abundance of O2-species increased. Remarkably, the relative abundances of N1-species with 

low carbon number increased and those with higher carbon number decreased.  

Conclusion 

These results revealed that the anaerobic biodegradations of heavy crude oil occurred. With 

the direct evidences, the degradations of alkyl side chains of N1-species by those anaerobic 

microbes could be deduced. 

Keywords: heteroatoms, anaerobic biodegradation, FT-ICR MS, N1-species, alkyl side 

chains  
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Crude oils are compositionally complex organic mixtures consisting of hydrocarbons, 

heteroatomic compounds, as well as a small percentage of metals1. Heteroatomic compounds 

being composed of N-, S-, and O-containing species make up a relatively small portion of 

crude oil, less than 15%, but make a great contribution to physical and chemical properties of 

crude oils. These heteroatoms are typically found in the high boiling fractions which raise a 

number of problems including plugging of oil wells, residue deposition in pipelines, and 

increasing amounts of distillation residues2. 

Microbial natural degradation the petroleum compounds, such as alkanes and aromatic 

hydrocarbons, usually focus on environmental aspects3,4. The neutral nitrogen compounds 

and acid NSO compounds in crude oils experienced subsurface anaerobic biodegradation 

were thoroughly analyzed5. Another scenario, during microbial enhanced oil recovery 

(MEOR), with the features of economic and ecological advantages, could also alter the crude 

oil compounds by cultured microbes with injected nutritions6,7. A major mechanism of 

microbial processes to enhanced oil recovery of heavy oils involves in situ conversion of 

long-chain compounds to short-chain ones by petroleum-degrading microorganisms8. 

Hydrocarbons ranging from C15-40 are susceptible to biodegradation4,9,10. However, 

biodegradations of polar compounds during MEOR process were not clearly confined.   

The relative susceptibility of polar compounds to microbial biodegradation was seldom 

examined because of that heteroatom-containing compounds are more resistant to microbial 

catabolism than that to alkanes4,11. However, toward the degradation of crude oil coupled to 

reduction of different non-oxygen terminal electron acceptors, such as nitrate and sulfate, 

compounds with low carbons atoms have been found to be more recalcitrant than mid- to 

high-molecular weight alkanes12-14. Therefore, the present study on the relative susceptibility 

of heteroatomic compounds to anaerobic microbial alteration would be a meaningful attempt 

to discover the microbial degradation of petroleum compounds with high molecular weight.  

Electrospray ionization (ESI) coupled to high-field Fourier transform ion cyclotron resonance 

mass spectrometry (FT-ICR-MS) technique has served as a powerful composition analysis 

tool for detailed characterization of complex mixtures in crude oils15-18. Moreover, nitrogen 

compounds, having a tendency to exist in higher relative abundance in the high boiling points 

fractions, have been resolved and identified based on negative-ion ESI FT-ICR MS 
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examinations19-21.  

At present, the level of assessing the susceptibility of hydrocarbons to biodegradation 

performs only on individual hydrocarbon classes. This way is particularly suited for 

examining the underlying physiology and metabolism of hydrocarbon degraders by tracing 

the structure and quantity changes of the individual substrate. However, during a field trail of 

MEOR, it is impossible to trace alterations of every individual compound due to the facts that 

crude oils are complex mixtures and the compounds could be attacked by various kinds of 

microorganisms. Therefore, tracing one class compound seemed to be the practicable way to 

carried out our investigation. 

Microbial degradation of the nitrogen compounds usually focuses on the degradation of the 

nonbasic nitrogen compounds, particularly carbazole and its alkyl derivatives, because they 

represent the majority of the total nitrogen and because the basic nitrogen compounds can be 

readily extracted if desired. So in this paper, we focused on tracking alterations of neutral 

nitrogen compounds during microbial treatments in three anaerobic enrichment cultures of 

sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB), fermentative consortia (FC) 

that are stated to be the three major respiratory types of anaerobic biodegradation of crude 

oils22. The objective of this study is to add valuable information on anaerobic biodegradation 

of heteroatoms-containing compound in heavy crude oil. 

 

Materials and methods 

sample collection 

About 10 L Water-oil sample and 2 L crude oil sample were collected directly from the 

wellhead of the production well of T6191 in the Middle Block No. 6 of Xinjiang Oil Field in 

Karamay city located at north-west of China, and filled fully into sterile plastic bottles and 

transported to the laboratory as fast as possible for inoculation. The crude oil with a viscosity 

of approximate 110 mPa·s was identified as heavy oil. Table 1 displayed mass fractions of 

saturate and aromatic compounds, resins and asphaltenes, and those were determined 

according to Chinese Standard Analytical Method for Petroleum and Natural Gas Industry 

(SY/T 5119-2008, details in supplementary materials).  
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Media preparation 

A modified basal seawater medium containing per liter 10 g NaCl, 3 g MgCl2·6H2O, 0.15 g 

CaCl2·2H2O, 0.25 g KCl, 0.6 g KBr, 0.5 g KH2PO4 and 1 mL resazurin of 1% (w/v) was used 

in this study. Three stock solutions of 1 M NaHCO3, trace elements and vitamin solution23 

were sterilized through filtration. For SRB enrichment, the modified basal seawater medium 

was supplemented per liter with 4 g Na2SO4, 1 g Na-acetate, 1 g yeast extract. For NRB 

enrichment, the basal seawater medium was supplemented per liter with 3 g KNO3, 1 g 

Na-acetate, 1 g yeast extract. And for FC enrichment, the basal seawater medium was 

supplemented per liter with 4 g peptone and 10 g yeast extract. After Autoclaved, 30 mL 1 M 

NaHCO3, 1 mL trace elements and 1 mL vitamin solution were added (per liter) and pH was 

adjusted to 7.0-7.2. 100 mL of medium was dispensed into 200 mL stoppered serum bottles 

and flushed with N2-CO2 (80/20,v/v)23. 

Inoculum preparation 

In this study, the water-oil samples collected from the production well of T6191 was used as 

inoculum. In order to ensure the presence of petroleum degradation microbes, microbial 

community inhabiting in the sample was detected based on 16S rDNA clone library 

technique24. Results revealed that Desulfocapsa sp. was predominant at 66.4%, followed by 

uncultured Cytophaga-Flavobacter-Bacteroidetes (CFB) group (9.1%), Syntrophus sp. (3.8%), 

Spirochaetes sp. (3%), Acrobacter sp. (2.3%) and Denitrovibrio sp. (1.5%). Most of the 

detected microbes were reported to be capable of anaerobic degradation petroleum14,24,25. The 

detail description of microbial analysis was in the supplementary materials (Fig. S1).  

According to microbial analysis, each bottle of prepared enrichment medium was inoculated 

with 5% (v/v) produced water and 5 mL crude oil and cultivated at 25℃ representing the in 

situ temperature of the oil reservoir for 120 days. A blank experiment without inoculum was 

also incubated. Each culture was conducted in triplicate. 

Oil sample preparation 

After incubation, the enrichment cultures were transferred to centrifuge tubes, and then 

centrifuged at 10,000 g for 10 min. The anaerobic treated oil sample in the above layer was 

collected for negative ion ESI FT-ICR MS analysis15. Each oil sample was diluted with 

toluene to produce a 10 mg/mL mixture. Each mixed solution was prepared by dissolving 20 
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μL into 1mL toluene/methanol (1:1, v/v) solution, redistilled twice. The raw heavy crude oil 

sample was prepared following the same procedure as the control sample. Except the steel 

piston of 10 μL Hamilton syringe, all utensils for handling and transfer solvents were 

glassware.  

ESI FT-ICR MS analysis.  

Mass analysis of all oil samples was performed with a Bruker apex-ultra FT-ICR mass 

spectrometer, which equipped with a 9.4 T superconducting magnet. Through a syringe pump, 

each prepared sample was injected at a flow rate of 180 µL/h into an Apollo II electrospray 

source. For negative-ion generation, the operating conditions included emitter voltage, 4.0 kV; 

capillary column introduce voltage, 4.5 kV; capillary column end voltage, -320 V. Under a 

2.4 V of directed current (DC) voltage and 400 Vp-p of radio-frequency (RF) amplitude, ions 

were accumulated externally in a hexapole ion trap for 0.1 s. All of the ions passed through a 

single quadrupole, accumulated for 4 s in an argon-filled hexapole collision pool that was 

operated at at 5 MHz and 400 Vp-p of RF amplitude. The delay was set to 1.2 ms for ions to 

transfer from the collision pool to an ICR cell. The mass range was set at m/z 200-700 Da for 

excited ions by RF excitation attenuated at 13 dB. The data size was set to 2 M, and 128 scan 

FT-ICR data sets were co-added to enhance the signal-to-noise ration and dynamic range16,26.  

Mass calibration and data processing  

A calibration of mass range from m/z 200 Da to 700 Da was carried out for ESI FT-ICR MS. 

Alkyl carbazole series were used as standards. Mass values with FT-ICR mass spectral 

magnitude greater than 5 times the standard deviation of the baseline noise were converted to 

Kendrick mass and exported to a data set. A custom software described in Shi’s paper at year 

2010 was used for data processing14. A two-mass scale-expanded segment close the most 

abundant peak in the spectrum was selected for all measured mass, and then each peak was 

identified in detail. The reference peaks containing at least one of those heteroatomic species 

were arbitrarily picked. Within a set ±0.001 Kendrick mass defect (KMD) tolerance, each 

class species and its isotopes with different DBEs and carbon numbers were detected15. 

 

 

 



 

 

This article is protected by copyright. All rights reserved. 

Results 

Distribution alterations of heteroatom class species 

The negative ion ESI FT-ICR MS broadband spectra (200-700 Da) of the raw heavy crude oil 

and the three treated oils collected from SRB, NRB and FC enrichment cultures were 

obtained (Fig.S2 in supplementary materials). The mass distributions of treated oils were 

found to be different in comparison to the original oil. For each oil sample more than 4900 

peaks at 200-700 Da were detected, of which approximately 3000 were assigned with the 

molecular formulas by exact masses. As the mass resolving power (m/Δm 50%) was 

insufficient to resolve all of the heteroatomic species present in oil samples, the mainly 

focused class species derived from the negative ion ESI FT-ICR MS spectra of the oil 

samples were N1, NO, NO2, O1 and O2.  

The relative abundances of each class heteroatomic species for the crude oil and the three 

treated oils are presented in Figure 1. Relative abundance is defined as the magnitude of each 

peak divided by the sum of magnitudes of all identified peaks, excluding the isotopic peaks in 

the mass spectrum. N1-species were the predominant class species in the negative ion ESI 

FT-ICR mass spectra of the raw heavy crude oil sample and the three treated oil samples. The 

relative abundance of N1-species slide from 73.2% in the raw crude oil to 68.5%, 65.1% and 

67.2% in the SRB, NRB and FB treated oil samples, respectively. While, the relative 

abundances of another dominant class, O2-species, in treated oils appeared to increase to 

25.9%, 30.1% and 28.2% in the SRB, NRB and FB treated oil samples, respectively, from 

20.8% in the raw heavy crude oil sample. In summary, in the heavy crude oil samples after 

co-incubated with three major anaerobic respiratory microbes, the relative abundance of 

N1-species decrease, while the relative abundance of O2-species increase. 
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Figure 1 The relative abundances of heteroatomic species in the raw heavy crude oil and three 

oil samples co-incubated with SRB, NRB and FC enrichment cultures. The results were 

averaged from triplicate cultures. 

 

Distribution alterations of DBE versus Carbon Number of N1-species 

The iso-abundance maps with dot-size-coded plots, double-bond equivalent (DBE) values 

and carbon numbers for the N1 class species in a blank crude oil and three treated oils were 

shown in Figure 2. Comparison of the range in both DBE and carbon number distribution 

clearly illustrates the similarity among the crude oil and three treated oils. The N1-species in 

all oil samples were distributed over a wide range of DBE values of 6−21 and carbon 

numbers of 15−47, while centered at DBE of 9−13 and carbon number of 23−32. There 

seemed to be not significant changes on the spread of DBE and carbon number distributions 

of N1 class species after the treatments using three typical anaerobic microbes based on the 

iso-abundance maps. However, a more meticulous analysis was conducted to identify the 

subtle alterations.  

 



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 2 Iso-abundance plots of DBE values vs carbon number of N1-species in a blank crude 

oil and three oil samples collected from SRB, NRB and FC enrichment cultures. The size of 

circles showed the relative abundance of N1-species. 

 

Relative abundance alterations of N1-species with each carbon number 

The carbon numbers of N1-species with same DBE indicate the pattern of alkyl distribution. 

Compounds with higher carbon numbers are those having longer alkyl side chains and/or 

multi-substituted alkyl side homologues. Figure 3 and 4 show the carbon number 

distributions for dominant N1-species with DBE of 9, 10, 11, 12 and 13. N1-species with DBE 

value 9 are most likely carbazoles. From the Figure 3A, the relative abundances for each 

carbon number match well between the crude oil and its treated oil samples, and compounds 

with 23-32 carbon numbers were dominant. However, the relative abundances of N1-species 

(DBE value 9) with carbon number below 26 in the three treated oils increased, while, those 

with carbon number over 26 decreased. The relative abundance of N1-species with DBE 

value of 9 and carbon number of 26 (carbazoles with 14 additional methylene groups) 
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appeared to increased most. Similarly, N1-species with DBE value of 12 are most likely 

benzocarbazoles that have an additional ring of benzene compared with those with DBE 

value of 9. From the Figure 4A, the relative abundance of N1-species with DBE value of 12 

and carbon number of 26 was also the point of the turn. N1-species with DBE value of 10, 11 

and 13 are most likely carbazoles with additional cyclic alkane rings26. From the Figure 3B, 

3C and 4B, the dominant compounds matched well between the crude oil and its treated oils, 

and the apparent alterations were that the relative abundances of N1-species with carbon 

number below 28 in the three treated oils increased, while, those with carbon number over 28 

decreased. While in the Figure 4B, the relative abundances for each carbon number after 

co-incubated with SRB appeared slighter alterations than those of NRB and FC. Even so, the 

relative abundance of N1-species with DBE value of 13 and carbon number of below 27 

increased and those with carbon number over 27 decreased after treatments. Exceptionally, 

the relative abundances of N1-species with carbon number of 29 of treated oils of SRB and 

NRB were higher than that in crude oil.  

One significant finding was that the proportion of low carbon number N1-species to high 

carbon number ones increased after co-incubation in three major anaerobic microbial 

enrichment cultures. 
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Figure 3 Carbon number distributions for the dominant N1-species with DBE of 9, 10 and 11. 

The results were presented as averages from the triplicate cultures. 
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Figure 4 Carbon number distributions for the dominant N1-species with DBE values of 12 

and 13.  

 

Discussion 

Biodegradation occurrence based on alterations of class distribution 

Biodegradation undoubtedly alters the compound class distributions of crude oil5. In this 

study, the relative abundances of O2-species (dominated at DBE of 1−3 and carbon number of 

21−29 in Figure S3) showed increase after the three major anaerobic microbial treatments, 

which was similar to previous studies that the increase of O2-species is more predominant in 

the heavily to severely biodegraded oils 1,5. Specially, in order to guarantee the detected 

compound classes were similar kinds of molecules, all oil samples were subjected to the 

negative ion ESI FT-ICR-MS analysis under same operating procedures and conditions.  
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O2-species detected are predominately carboxylic acids because those species are selectively 

ionized in negative ion ESI16,26. As previously stated, acids are important intermediates in the 

degradation of complex organic matters, and could also be intermediates in the anaerobic 

degradation of hydrocarbons25,27,28. In this study, each compound in the heavy crude oil 

potentially might be attacked by various degraders. The saturated and aromatic compounds, 

major potential substrates for anaerobic microbes to produce acids, represented 67.7% in the 

crude oil under study (Table 1). 

N1-species selectively ionized by negative ion electrospray are dominated by carbazoles and 

its derivatives. Aerobic carbazole degradation by a variety of carbazoles degrading 

microorganisms has been well investigated over the last two decades. These different 

carbazole degraders follow similar degradation pathways, and the first step is catalysis by 

carbazole dioxygenase, which converts carbazole to 2'-aminobiphenyl-2,3-diol29-32, while, the 

literature about anaerobic microbial biodegradation of carbazole was rare. Nonetheless, the 

carbazole biodegradation under anaerobic conditions could be somehow possible.  

In this study, it is impossible to trace alterations of every compound that could be attacked by 

anaerobic microbes. However, with the direct evidences detected in this study, the production 

of acids, the consumption of N1-species and the alterations of class distribution, those could 

demonstrate the heavy crude oil anaerobic biodegradation occurrence. 

 

Biodegradation of alkyl side chains of N1-species 

From the iso-abundance maps of N1-species in the blank crude oil and three treated oils, little 

change was observed in the distributions of dot-size-coded plots (double-bond equivalent 

(DBE) values versus carbon numbers). However, when we examined the carbon number 

distributions for N1-species with same DBE, obvious alterations appeared. The most apparent 

was that the relative abundances of low carbon number N1-species increased, while the 

relative abundances of higher carbon number ones decreased, which suggested that the long 

alkyl side-chains might attacked by three major anaerobic microbes. Similarity, it was 

reported that the reduced degree of alkylation in all DBEs of N1 compounds in oils subjected 

to greater microbial activity5. And they suggested that degrading enzyme can attack long 

side-chains as if they were alkanes. Although the consideration of crude oil biodegradation 
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under anaerobic conditions was negligible until the early 1980s3, two mechanisms for the 

anaerobic oxidation of n-alkanes were proven. One was the activation of the sub-terminal 

(C-2) carbon atom followed by addition to fumarate33. The other mechanism was 

carboxylation with inorganic carbon at C-325. Regularly, for N1-species with DBE of 9 and 12, 

the relative abundances of compounds with carbon number over 26 decreased; and for 

N1-species with DBE of 10, 11 and 13, the relative abundances of compounds with carbon 

number over 28 decreased. The occurrence of the trends might relate to the anaerobic 

biodegradation of side-chains, but how microbes attack those side-chains was still unclear. 

The identification of the underlying mechanisms requires further in-depth research. 

In addition, three different types of microbial communities with different kinds of terminal 

electron acceptors were enriched in this study. The available results showed similar patterns 

of the alterations of N1-species in the three anaerobic microbes enrichment cultures 

co-incubated with heavy crude oil, which indicated that biodegradation of the crude oil in the 

three anaerobic microbes enrichment cultures co-incubation might followed the same 

metabolism mechanisms. 

 

Conclusion 

In this study, we demonstrated that N1-species in heavy crude oil could be degraded by the 

common anaerobic microbes through detection technology of negative ion ESI FT-ICR MS. 

Under the three classic anaerobic conditions, the increase of the relative abundances of 

O2-species was a typical signal of the biodegradation occurrence. Furthermore, the relative 

abundances of low carbon number N1-species increased, while the relative abundances of 

mid- to high carbon number ones decreased, suggesting that anaerobic microbial alteration 

occurred in the N1-species compounds with long alkyl side-chains. This was the direct 

evidence for the anaerobic biodegradation of long alkyl side-chains in heteroatomic 

compounds. As the complex of the heavy crude oil and the less referenced article, the 

mechanisms involved in anaerobic biodegradation heteroatomic species in heavy crude oil 

was still unclear, further in-depth researches are required. 
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Table 1 Mass fractions of saturate and aromatic compounds, resins and asphaltenes in the 

crude oil of T6191. 

Fractions Saturate 

compounds 

Aromatic 

compounds 

Resins Asphaltenes 

Abundance in % (w/w) 41.4 26.3 22.4 9.9 

 

 


