2,780 research outputs found
On Systematic Design of Protectors for Employing OTS Items
Off-the-shelf (OTS) components are increasingly used in application areas with stringent dependability requirements. Component wrapping is a well known structuring technique used in many areas. We propose a general approach to developing protective wrappers that assist in integrating OTS items with a focus on the overall system dependability. The wrappers are viewed as redundant software used to detect errors or suspicious activity and to execute appropriate recovery when possible; wrapper development is considered as a part of system integration activities. Wrappers are to be rigorously specified and executed at run time as a means of protecting OTS items against faults in the rest of the system, and the system against the OTS item's faults. Possible symptoms of erroneous behaviour to be detected by a protective wrapper and possible actions to be undertaken in response are listed and discussed. The information required for wrapper development is provided by traceability analysis. Possible approaches to implementing “protectors” in the standard current component technologies are briefly outline
Recommended from our members
Preparative in vitro biosynthesis of complex polyketides
My Dean’s Scholars thesis project concerns the development of an enzymatic system for the
in vitro production of polyketides, which we hope will lead to the discovery of new molecules and
new medicines. Modular polyketide synthases (PKSs) are massive enzymes that act as molecular assembly
lines to elegantly transform small carboxylic acids into complex polyketides. Many natural
polyketides are currently used for their medicinal effects, including the antibiotic erythromycin, the
immunosuppressant rapamycin, and the anticancer agent epothilone. A long-term goal of the
Keatinge-Clay group is to use modified PKSs to create synthetic polyketides, which we hope will
lead to new pharmaceutical drugs and valuable chiral intermediates for organic synthesis. Unfortunately,
both the study and practical utility of PKSs are hampered by the low yield of their polyketide
products – yields from the current protocol rarely exceed one milligram per liter of culture. To create
a more efficient, reduced-component platform for studying engineered PKSs and to increase
their yield, we devised a system for the preparative in vitro production of complex polyketides. This
system includes enzymes necessary for the production of polyketide intermediates from propionate,
a modified PKS to form a synthetic polyketide, and enzymes that aid in the regeneration of ATP
and NADPH from polyphosphate and glucose, respectively. Currently, we have isolated and assayed
most enzymes in the system and are optimizing the system conditions for polyketide yield. We hypothesize
that gram quantities of complex polyketides will be produced using the in vitro system,
greatly increasing the time and energy efficiency of polyketide synthesis.Biochemistr
Recommended from our members
Precipitation and hardening in irradiated low alloy steels with a wide range of Ni and Mn compositions
Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions
Cool subdwarfs are the oldest members of the low mass stellar population.
Mostly present in the galactic halo, subdwarfs are characterized by their low
metallicity. Measuring their binary fraction and comparing it to solar
metallicity stars could give key insights into the star formation process early
in the history of the Milky Way. However, because of their low luminosity and
relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs
have suffered from small sample sizes and incompleteness. Previous surveys have
suggested that the binary fraction of red subdwarfs is much lower than for
their main sequence cousins. Using the highly efficient RoboAO system, we
present the largest yet high-resolution survey of subdwarfs, sensitive to
angular separations, down to 0.15 arcsec, and contrast ratios, up to 6
magnitude difference, invisible in past surveys. Of 344 target cool subdwarfs,
40 are in multiple systems, 16 newly discovered, for a binary fraction of 11.6
percent and 1.8 percent error. We also discovered 6 triple star systems for a
triplet fraction of 1.7 percent and 0.7 percent error. Comparisons to similar
surveys of solar metallicity dwarf stars gives a 3 sigma disparity in
luminosity between companion stars, with subdwarfs displaying a shortage of low
contrast companions.Comment: 13 pages, 10 figures, submitted to Ap
Turbulence and wind speed profiles for simulating the TMT AO performances
The site testing campaign of the Thirty Meter Telescope gathered an extensive amount of turbulence profiles. This data is modeled to describe the statistical characteristics of each site and act as "standard atmospheres" for use in AO simulations
Reorientation of the human body by means of arm motions
Arm motion effects on orientation of human body during free fall, and FORTRAN 4 program for solving equation
Repeated muscle damage blunts the increase in heat strain during subsequent exercise heat stress
Purpose Exercise-induced muscle damage (EIMD) has recently been shown to increase heat strain during exercise heat stress (HS), and represents a risk factor for exertional heat illness (EHI). We hypothesised that a repeated bout of EIMD blunts the increase in rectal temperature (T re) during subsequent endurance exercise in the heat. Methods Sixteen non-heat-acclimated males were randomly allocated to EIMD (n = 9) or control (CON, n = 7). EIMD performed a downhill running treatment at -10 % gradient for 60 min at 65 % V. O2max in 20 °C, 40 % RH. CON participants performed the same treatment but at +1 % gradient. Following treatment, participants rested for 30 min, then performed HS (+1 % gradient running for 40 min at 65 % V. O2max in 33 °C, 50 % RH) during which thermoregulatory measures were assessed. Both groups repeated the treatment and subsequent HS 14 days later. Isometric quadriceps strength was assessed at baseline, and 48 h post-treatment. Results The decrease in leg strength 48 h post-EIMD trial 1 (-7.5 %) was absent 48 h post-EIMD trial 2 (+2.9 %) demonstrating a repeated bout effect. Final T re during HS was lower following EIMD trial 2 (39.25 ± 0.47 °C) compared with EIMD trial 1 (39.59 ± 0.49 °C, P < 0.01), with CON showing no difference. Thermal sensation and the T re threshold for sweating onset were also lower during HS on EIMD trial 2. Conclusion The repeated bout effect blunted the increase in heat strain during HS conducted after EIMD. Incorporating a muscle-damaging bout into training could be a strategy to reduce the risk of EHI and improve endurance performance in individuals undertaking heavy exercise with an eccentric component in the heat
KOI-3158: The oldest known system of terrestrial-size planets
The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii) can form under a wide range of metallicities. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe’s history when metals were far less abundant. We report Kepler spacecraft observations of KOI-3158, a metal-poor Sun-like star from the old population of the Galactic thick disk, which hosts five planets with sizes between Mercury and Venus. We used asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that KOI-3158 formed when the Universe was less than 20 % of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universe’s 13.8-billion-year history, providing scope for the existence of ancient life in the Galaxy
Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager
Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W
- …