42 research outputs found

    A new class of large-amplitude radial-mode hot subdwarf pulsators

    Full text link
    Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≀ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T eff, and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T eff and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M ⊙ helium-core pre-WDs.Published versio

    Erstellung einer Übersicht ĂŒber die rechtlichen Regelungen zum ökologischen Landbau wichtiger Import- und ExportlĂ€nder

    Get PDF
    Ziel des Projektes ist es, einen Überblick ĂŒber die in wichtigen Import- und ExportlĂ€ndern geltenden gesetzlichen Regelungen und privatrechtlich Vereinbarungen zum ökologischen Landbau zu erstellen. Es wurde eine Datenbank entwickelt, die ĂŒber die gesetzlichen Regelungen und die wichtigsten Verbandsrichtlinien fĂŒr Ökoprodukte in den fĂŒr Deutschland relevanten Import- und ExportlĂ€ndern informiert. Das Angebot beschreibt in leicht verstĂ€ndlicher Sprache die verschiedenen nationalen gesetzlichen Vorgaben fĂŒr die Erzeugung, Verarbeitung, Kennzeichnung und Kontrolle von Ökoprodukten sowie deren Unterschiede zur EU-Öko-Verordnung. DarĂŒber hinaus werden Richtlinien von Zertifizierungsorganisationen beschrieben, die eine marktbeherrschende Stellung in den lokalen MĂ€rkten einnehmen. ErgĂ€nzt wird das Angebot durch Originaltexte der Verordnungen und Richtlinien, soweit verfĂŒgbar in deutscher oder englischer Übersetzung sowie zahlreiche Adressen von Kontroll-/Zertifizierungsstellen und Behörden. Zielgruppen sind an Öko-Produkten interessierte Handels- und Verarbeitungsunternehmen sowie Beratungsorganisationen, Kontrollstellen und Behörden. Die Festlegung von SchwerpunktlĂ€ndern erfolgte auf Basis der Auswertung verfĂŒgbarer Import-/Export-Statistiken sowie einer schriftlichen Befragung ausgewĂ€hlter Im- und Exportunternehmen fĂŒr Öko-Produkte in Deutschland. Die Daten wurden in Form einer ĂŒber das Internet verfĂŒgbaren Datenbank bereitgestellt. Die Datenbank wurde im Mai und Oktober 2003 aktualisiert

    Characterizing the Cool KOIs. V. KOI-256: A Mutually Eclipsing Post-common Envelope Binary

    Get PDF
    We report that Kepler Object of Interest 256 (KOI-256) is a mutually eclipsing post-common envelope binary (ePCEB), consisting of a cool white dwarf (M_★ = 0.592 ± 0.089 M_☉, R_★ = 0.01345 ± 0.00091 R_☉, T_(eff) = 7100 ± 700 K) and an active M3 dwarf (M_★ = 0.51 ± 0.16 M_☉, R_★ = 0.540 ± 0.014 R_☉, T_(eff) = 3450 ± 50 K) with an orbital period of 1.37865 ± 0.00001 days. KOI-256 is listed as hosting a transiting planet-candidate by Borucki et al. and Batalha et al.; here we report that the planet-candidate transit signal is in fact the occultation of a white dwarf as it passes behind the M dwarf. We combine publicly-available long- and short-cadence Kepler light curves with ground-based measurements to robustly determine the system parameters. The occultation events are readily apparent in the Kepler light curve, as is spin-orbit synchronization of the M dwarf, and we detect the transit of the white dwarf in front of the M dwarf halfway between the occultation events. The size of the white dwarf with respect to the Einstein ring during transit (R_(Ein) = 0.00473 ± 0.00055 R ☉) causes the transit depth to be shallower than expected from pure geometry due to gravitational lensing. KOI-256 is an old, long-period ePCEB and serves as a benchmark object for studying the evolution of binary star systems as well as white dwarfs themselves, thanks largely to the availability of near-continuous, ultra-precise Kepler photometry

    A miniature, lowpower , intelligent sensor node for persistent acoustic surveillance

    Get PDF
    ABSTRACT The desire for persistent, long term surveillance and covertness places severe constraints on the power consumption of a sensor node. To achieve the desired endurance while minimizing the size of the node, it is imperative to use application-specific integrated circuits (ASICs) that deliver the required performance with maximal power efficiency while minimizing the amount of communication bandwidth needed. This paper reviews our ongoing effort to integrate several micropower devices for low-power wake-up detection, blind source separation and localization and pattern classification, and demonstrate the utility of the system in relevant surveillance applications. The capabilities of each module are presented in detail along with performance statistics measured during recent experiments

    An 8.8 minute orbital period eclipsing detached double white dwarf binary

    Get PDF
    We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just 8.88.8 minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass white dwarfs, and will merge in approximately 400,000 years to form either an isolated hot subdwarf or an R Coronae Borealis star. Like its 6.91 min6.91\, \rm min counterpart, ZTF J1539+5027, ZTF J2243+5242 will be among the strongest gravitational wave sources detectable by the space-based gravitational-wave detector The Laser Space Interferometer Antenna (LISA) because its gravitational-wave frequency falls near the peak of LISA's sensitivity. Based on its estimated distance of d=2120−115+131 pcd=2120^{+131}_{-115}\,\rm pc, LISA should detect the source within its first few months of operation, and should achieve a signal-to-noise ratio of 87±587\pm5 after four years. We find component masses of MA=0.349−0.074+0.093 M⊙M_A= 0.349^{+0.093}_{-0.074}\,M_\odot and MB=0.384−0.074+0.114 M⊙M_B=0.384^{+0.114}_{-0.074}\,M_\odot, radii of RA=0.0308−0.0025+0.0026 R⊙R_A=0.0308^{+0.0026}_{-0.0025}\,R_\odot and RB=0.0291−0.0024+0.0032 R⊙R_B = 0.0291^{+0.0032}_{-0.0024}\,R_\odot, and effective temperatures of TA=22200−1600+1800 KT_A=22200^{+1800}_{-1600}\,\rm K and TB=16200−1000+1200 KT_B=16200^{+1200}_{-1000}\,\rm K. We determined all of these properties, and the distance to this system, using only photometric measurements, demonstrating a feasible way to estimate parameters for the large population of optically faint (r>21 mABr>21 \, m_{\rm AB}) gravitational-wave sources which the Vera Rubin Observatory (VRO) and LISA should identify.Comment: 12 pages, 7 figures, 3 tables, submitte

    Orbital Decay in a 20 Minute Orbital Period Detached Binary with a Hydrogen-poor Low-mass White Dwarf

    Get PDF
    We report the discovery of a detached double white dwarf binary with an orbital period of ≈20.6 minutes, PTF J053332.05+020911.6. The visible object in this binary, PTF J0533+0209B, is a ≈0.17 M⊙ mass white dwarf with a helium-dominated atmosphere containing traces of hydrogen. This object exhibits ellipsoidal variations due to tidal deformation, and is the visible component in a single-lined spectroscopic binary with a velocity semi-amplitude of K_B = 618.7 ± 6.9 km s⁻Âč. We have detected significant orbital decay due to the emission of gravitational radiation, and we expect that the Laser Interferometer Space Antenna (LISA) will detect this system with a signal to noise of 8.4^(+4.2)_(-3.0) after four years of operation. Because this system already has a well-determined orbital period, radial velocity semi-amplitude, temperature, atmospheric composition, surface gravity, and orbital decay rate, a LISA signal will help fully constrain the properties of this system by providing a direct measurement of its inclination. Thus, this binary demonstrates the synergy between electromagnetic and gravitational radiation for constraining the physical properties of an astrophysical object

    Characterizing the cool kois. V. koi-256: A mutually eclipsing post-common envelope binary

    Get PDF
    We report that Kepler Object of Interest 256 (KOI-256) is a mutually eclipsing post-common envelope binary (ePCEB), consisting of a cool white dwarf (M* = 0.592 ± 0.089 M, R = 0.01345 ± 0.00091 R , T eff = 7100 ± 700 K) and an active M3 dwarf (M* = 0.51 ± 0.16 M , R* = 0.540 ± 0.014 R , T eff = 3450 ± 50 K) with an orbital period of 1.37865 ± 0.00001 days. KOI-256 is listed as hosting a transiting planet-candidate by Borucki et al. and Batalha et al.; here we report that the planet-candidate transit signal is in fact the occultation of a white dwarf as it passes behind the M dwarf. We combine publicly-available long- and short-cadence Kepler light curves with ground-based measurements to robustly determine the system parameters. The occultation events are readily apparent in the Kepler light curve, as is spin-orbit synchronization of the M dwarf, and we detect the transit of the white dwarf in front of the M dwarf halfway between the occultation events. The size of the white dwarf with respect to the Einstein ring during transit (R Ein = 0.00473 ± 0.00055 R ) causes the transit depth to be shallower than expected from pure geometry due to gravitational lensing. KOI-256 is an old, long-period ePCEB and serves as a benchmark object for studying the evolution of binary star systems as well as white dwarfs themselves, thanks largely to the availability of near-continuous, ultra-precise Kepler photometry. © 2013. The American Astronomical Society. All rights reserved.

    A New Class of Large-amplitude Radial-mode Hot Subdwarf Pulsators

    Get PDF
    Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≀ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T_(eff), and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T_(eff) and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M_⊙ helium-core pre-WDs
    corecore