51 research outputs found

    Chromatic transit light curves of disintegrating rocky planets

    Get PDF
    Context. Kepler observations have revealed a class of short period exoplanets, of which Kepler-1520 b is the prototype, which have comet-like dust tails thought to be the result of small, rocky planets losing mass. The shape and chromaticity of the transits constrain the properties of the dust particles originating from the planet's surface, offering a unique opportunity to probe the composition and geophysics of rocky exoplanets. Aims. We aim to approximate the average Kepler long-cadence light curve of Kepler-1520 b and investigate how the optical thickness and transit cross-section of a general dust tail can affect the observed wavelength dependence and depth of transit light curves. Methods. We developed a new 3D model that ejects sublimating particles from the planet surface to build up a dust tail, assuming it to be optically thin, and used 3D radiative transfer computations that fully treat scattering using the distribution of hollow spheres (DHS) method, to generate transit light curves between 0.45 and 2.5 μ\mum. Results. We show that the transit depth is wavelength independent for optically thick tails, potentially explaining why only some observations indicate a wavelength dependence. From the 3D nature of our simulated tails, we show that their transit cross-sections are related to the component of particle ejection velocity perpendicular to the planet's orbital plane and use this to derive a minimum ejection velocity of 1.2 kms−1^{-1}. To fit the average transit depth of Kepler-1520 b of 0.87%, we require a high dust mas-loss rate of 7 −- 80 M⊕_\oplus Gyr−1^{-1} which implies planet lifetimes that may be inconsistent with the observed sample. Therefore, these mass-loss rates should be considered to be upper limits.Comment: 22 pages, 22 figures, accepted for publication in A&

    Search for gas from the disintegrating rocky exoplanet K2-22b

    Full text link
    [Abridged] Aims. We searched for circumplanetary sodium and ionized calcium gas around the disintegrating rocky exoplanet K2-22 b to constrain its gas-loss and sublimation processes. Methods. We observed four transits of K2-22 b with X-shooter on ESO's Very Large Telescope to obtain time-series of intermediate-resolution (R ∼\sim 11400) spectra. Our analysis focused on the two sodium D lines (588.995 nm and 589.592 nm) and the Ca+^{+} triplet (849.802 nm, 854.209 nm and 866.214 nm). Planet-related absorption is searched for in the velocity rest frame of the planet, which changes from ±\pm66 kms−1^{-1} during the transit. Results. Since K2-22 b exhibits highly variable transit depths, we analyzed the individual nights and their average. By injecting signals we reached 5σ\sigma upper-limits on the individual nights that ranged from 11% - 13% and 1.7% - 2.0% for the tail's sodium and ionized calcium absorption, respectively. Night 1 was contaminated by its companion star so we considered weighted averages with and without Night 1 and quote conservative 5σ\sigma limits without Night 1 of 9% and 1.4%, respectively. Assuming their mass fractions to be similar to those in the Earth's crust, these limits correspond to scenarios in which 0.04% and 35% of the transiting dust is sublimated and observed as absorbing gas. However, this assumes the gas to be co-moving with the planet. We show that for the high irradiation environment of K2-22 b, sodium and ionized calcium could be quickly accelerated to 100s of km s−1^{-1} due to radiation pressure and entrainment by the stellar wind, making them much more difficult to detect. No evidence for such possibly broad and blue-shifted signals are seen in our data. Conclusions. Future observations aimed at observing circumplanetary gas should take into account the possible broad and blue-shifted velocity field of atomic and ionized species.Comment: Accepted on 7 June 2019 for publication in Astronomy and Astrophysics (A&A). 17 pages, 11 figures. Submission updated after language editing by A&

    Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e

    Get PDF
    [Abridged] The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca+^+) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cancri e could be a hot rocky planet without an atmosphere. High resolution (R∼\sim110000) time-series spectra of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m & HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and K lines, the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km/sec. Combining all five transit data sets, we detect a signal potentially associated with sodium in the planet exosphere at a statistical significance level of 3σ\sigma. Combining the four HARPS transits that cover the calcium H and K lines, we also find a potential signal from ionized calcium (4.1 σ\sigma). Interestingly, this latter signal originates from just one of the transit measurements - with a 4.9σ\sigma detection at this epoch. Unfortunately, due to the low significance of the measured sodium signal and the potentially variable Ca+^+ signal, we estimate the p-values of these signals to be too high (corresponding to <4σ\sigma) to claim unambiguous exospheric detections. By comparing the observed signals with artificial signals injected early in the analysis, the absorption by Na and Ca+^+ are estimated to be at a level of approximately 2.3×10−3\times 10^{-3} and 7.0×10−2\times 10^{-2} respectively, relative to the stellar spectrum.Comment: 15 pages, 8 figures, submission updated after English language editing, submission updated to correct a mistaken cross-reference noticed in A&A proo

    Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

    Get PDF
    Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust grains, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Using a self-consistent numerical model of the dust dynamics and sublimation, we calculate the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generate synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which are then compared with the phase-folded Kepler light curve. We explore the free-parameter space thoroughly using a Markov chain Monte Carlo method. Our physics-based model is capable of reproducing the observed light curve in detail. Good fits are found for initial grain sizes between 0.2 and 5.6 micron and dust mass loss rates of 0.6 to 15.6 M_earth/Gyr (2-sigma ranges). We find that only certain combinations of material parameters yield the correct tail length. These constraints are consistent with dust made of corundum (Al2O3), but do not agree with a range of carbonaceous, silicate, or iron compositions. Using a detailed, physically motivated model, it is possible to constrain the composition of the dust in the tails of evaporating rocky exoplanets. This provides a unique opportunity to probe to interior composition of the smallest known exoplanets.Comment: 18 pages, 11 figures, A&A accepte

    Spectroscopic Transit Search: a self-calibrating method for detecting planets around bright stars

    Get PDF
    We search for transiting exoplanets around the star β\beta Pictoris using high resolution spectroscopy and Doppler imaging that removes the need for standard star observations. These data were obtained on the VLT with UVES during the course of an observing campaign throughout 2017 that monitored the Hill sphere transit of the exoplanet β\beta Pictoris b. We utilize line profile tomography as a method for the discovery of transiting exoplanets. By measuring the exoplanet distortion of the stellar line profile, we remove the need for reference star measurements. We demonstrate the method with white noise simulations, and then look at the case of β\beta Pictoris, which is a δ\delta Scuti pulsator. We describe a method to remove the stellar pulsations and perform a search for any transiting exoplanets in the resultant data set. We inject fake planet transits with varying orbital periods and planet radii into the spectra and determine the recovery fraction. In the photon noise limited case we can recover planets down to a Neptune radius with an ∼\sim80% success rate, using an 8 m telescope with a R∼100,000R\sim 100,000 spectrograph and 20 minutes of observations per night. The pulsations of β\beta Pictoris limit our sensitivity to Jupiter-sized planets, but a pulsation removal algorithm improves this limit to Saturn-sized planets. We present two planet candidates, but argue that their signals are most likely caused by other phenomena. We have demonstrated a method for searching for transiting exoplanets that (i) does not require ancillary calibration observations, (ii) can work on any star whose rotational broadening can be resolved with a high spectral dispersion spectrograph and (iii) provides the lowest limits so far on the radii of transiting Jupiter-sized exoplanets around β\beta Pictoris with orbital periods from 15 days to 200 days with >50% coverage.Comment: Accepted for publication in A&A, 8 pages, 8 figures. The Github repository can be found at https://github.com/lennartvansluijs/Spectroscopic-Transit-Searc

    Discovery of a New WZ Sagittae Type Cataclysmic Variable in the Kepler/K2 Data

    Get PDF
    We identify a new, bright transient in the Kepler/K2 Campaign 11 field. Its light curve rises over seven magnitudes in a day and then declines three magnitudes over a month before quickly fading another two magnitudes. The transient was still detectable at the end of the campaign. The light curve is consistent with a WZ~Sge type dwarf nova outburst. Early superhumps with a period of 82 minutes are seen in the first 10 days and suggest that this is the orbital period of the binary which is typical for the WZ~Sge class. Strong superhump oscillations develop ten days after peak brightness with periods ranging between 83 and 84 minutes. At 25 days after the peak brightness a bump in the light curve appears to signal a subtle rebrightening phase implying that this was an unusual type-A outburst. This is the only WZ~Sge type system observed by Kepler/K2 during an outburst. The early rise of this outburst is well-fit with a broken power law. In first 10 hours the system brightened linearly and then transitioned to a steep rise with a power law index of 4.8. Looking at archival Kepler/K2 data and new TESS observations, a linear rise in the first several hours at the initiation of a superoutburst appears to be common in SU~UMa stars.Comment: 11 pages, 14 figures, 2 tables, accepted to appear in the Monthly Notices of the Royal Astronomical Societ

    SN 2021zny: an early flux excess combined with late-time oxygen emission suggests a double white dwarf merger event

    Get PDF
    We present a photometric and spectroscopic analysis of the ultra-luminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from ∼5.3\sim5.3 hours after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multi-wavelength coverage from a variety of ground- and space-based telescopes, and is concluded with a nebular spectrum ∼10\sim10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (MB=−19.95M_{B}=-19.95 mag), the slow decline (Δm15(B)=0.62\Delta m_{15}(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities and the presence of significant unburned material above the photosphere. However, a flux excess for the first ∼1.5\sim1.5 days after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behavior, while its +313+313 d spectrum shows prominent [O I] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with ∼0.04 M⊙\sim0.04\:\mathrm{M_{\odot}} of H/He-poor circumstellar material at a distance of ∼1012\sim10^{12} cm, while the low ionization state of the late-time spectrum reveals low abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system of two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.Comment: 19 pages, 16 figures, accepted for publication in MNRA

    Flight of the Bumblebee: the Early Excess Flux of Type Ia Supernova 2023bee revealed by TESSTESS, SwiftSwift and Young Supernova Experiment Observations

    Full text link
    We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee in NGC~2708 (D=32±3D = 32 \pm 3 Mpc), finding excess flux in the first days after explosion relative to the expected power-law rise from an expanding fireball. This deviation from typical behavior for SNe Ia is particularly obvious in our 10-minute cadence TESSTESS light curve and SwiftSwift UV data. Compared to a few other normal SNe Ia with detected early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Si II, C II and Ca II absorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models that have been proposed to explain the early flux excess in SNe Ia. Interaction with either a nearby companion star or close-in circumstellar material is expected to produce a faster evolution than seen in the data. Radioactive material in the outer layers of the ejecta, either from a double detonation explosion or simply an explosion with a 56^{56}Ni clump near the surface, can not fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.Comment: 21 pages, 12 figures. Accepted by the astrophysical journa
    • …
    corecore