7 research outputs found

    STAT3 in epithelial cells regulates inflammation and tumor progression to malignant state in colon

    Get PDF
    AbstractChronic inflammation is an important risk factor for the development of colorectal cancer; however, the mechanism of tumorigenesis especially tumor progression to malignancy in the inflamed colon is still unclear. Our study shows that epithelial signal transducer and activator of transcription 3 (STAT3), persistently activated in inflamed colon, is not required for inflammation-induced epithelial overproliferation and the development of early-stage tumors; however, it is essential for tumor progression to advanced malignancy. We found that one of the mechanisms that epithelial STAT3 regulates in tumor progression might be to modify leukocytic infiltration in the large intestine. Activation of epithelial STAT3 promotes the infiltration of the CD8+ lymphocyte population but inhibits the recruitment of regulatory T (Treg) lymphocytes. The loss of Stat3 in epithelial cells promoted the expression of cytokines/chemokines including CCL19, CCL28, and RANTES, which are known to be able to recruit Treg lymphocytes. Linked to these changes was the pathway mediated by sphingosine 1-phosphate receptor 1 and sphingosine 1-phosphate kinases, which is activated in colonic epithelial cells in inflamed colon with functional STAT3 but not in epithelial cells deleted of STAT3. Our data suggest that epithelial STAT3 plays a critical role in inflammation-induced tumor progression through regulation of leukocytic recruitment especially the infiltration of Treg cells in the large intestine

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Proceedings of The HKIE Geotechnical Division 41st Annual Seminar: Adapt to Challenges, Create to Thrive

    No full text
    This seminar proceedings contains articles on the various research ideas of the academic community and practitioners presented at The HKIE Geotechnical Division 41st Annual Seminar (GDAS2021). GDAS2021 was jointly organized by the Geotechnical Division, The Hong Kong Institution of Engineers, & The Hong Kong Geotechnical Society on July 18th May 2021. Seminar Title: The HKIE Geotechnical Division 41st Annual SeminarSeminar Acronym: GDAS2021Seminar Date: 18 May 2021Seminar Location: Online (Virtual Mode)Seminar Organizers: Geotechnical Division, The Hong Kong Institution of Engineers, & The Hong Kong Geotechnical Society
    corecore