50 research outputs found

    Management regime and habitat response influence abundance of regal fritillary (Speyeria idalia) in tallgrass prairie

    Get PDF
    The \u3e2,570,000-ha Flint Hills ecoregion of Kansas, USA, harbors the largest remaining contiguous tract of tallgrass prairie in North America, a unique system, as the remainder of North America’s tallgrass prairie has succumbed to development and conversion. Consequently, the loss and degradation of tallgrass prairie has reduced populations of many North American prairie-obligate species including the regal fritillary (Speyeria idalia) butterfly. Population abundance and occupied range of regal fritillary have declined \u3e99%, restricting many populations to isolated, remnant patches of tallgrass prairie. Such extensive decline has resulted in consideration of the regal fritillary for protection under the Endangered Species Act. Although it is widely accepted that management practices such as fire, grazing, and haying are necessary to maintain prairie ecosystems, reported responses by regal fritillary to these management regimes have been ambiguous.We tested effects of prescribed fire across short, moderate, and long fire-return intervals as well as grazing and haying management treatments on regal fritillary density. We also tested the relative influence of habitat characteristics created by these management regimes by measuring density of an obligate host plant (Viola spp.) and canopy cover of woody vegetation, grasses, forbs/ferns, bare ground, and litter. We found density was at least 1.6 times greater in sites burned with a moderate fire-return interval vs. sites burned with short and long fire-return intervals. Overall management regardless of fire-return interval did not have an effect on density. Percent cover of grass had the strongest positive association, while percent cover of woody vegetation had the greatest negative effect on density. Our results indicate that patch-burning is a viable and perhaps even ideal management strategy for regal fritillary in tallgrass prairie landscapes. Additionally, these results elucidate the importance of fire, particularly when applied at moderate-return intervals to regal fritillary, and corroborate a growing suite of studies that suggest fire is perhaps not as detrimental to populations of regal fritillary as previously believed

    Enamel Caries Detection and Diagnosis: An Analysis of Systematic Reviews

    Get PDF
    Detection and diagnosis of caries-typically undertaken through a visual-tactile examination, often with supporting radiographic investigations-is commonly regarded as being broadly effective at detecting caries that has progressed into dentine and reached a threshold where restoration is necessary. With earlier detection comes an opportunity to stabilize disease or even remineralize the tooth surface, maximizing retention of tooth tissue and preventing a lifelong cycle of restoration. We undertook a formal comparative analysis of the diagnostic accuracy of different technologies to detect and inform the diagnosis of early caries using published Cochrane systematic reviews. Forming the basis of our comparative analysis were 5 Cochrane diagnostic test accuracy systematic reviews evaluating fluorescence, visual or visual-tactile classification systems, imaging, transillumination and optical coherence tomography, and electrical conductance or impedance technologies. Acceptable reference standards included histology, operative exploration, or enhanced visual assessment (with or without tooth separation) as appropriate. We conducted 2 analyses based on study design: a fully within-study, within-person analysis and a network meta-analysis based on direct and indirect comparisons. Nineteen studies provided data for the fully within-person analysis and 64 studies for the network meta-analysis. Of the 5 technologies evaluated, the greatest pairwise differences were observed in summary sensitivity points for imaging and all other technologies, but summary specificity points were broadly similar. For both analyses, the wide 95% prediction intervals indicated the uncertainty of future diagnostic accuracy across all technologies. The certainty of evidence was low, downgraded for study limitations, inconsistency, and indirectness. Summary estimates of diagnostic accuracy for most technologies indicate that the degree of certitude with which a decision is made regarding the presence or absence of disease may be enhanced with the use of such devices. However, given the broad prediction intervals, it is challenging to predict their accuracy in any future "real world" context

    Identification of new susceptibility loci for osteoarthritis (arcOGEN):a genome-wide association study

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. We identified five genome-wide significant loci (binomial test p≤5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention.Arthritis Research UK 1803

    Articulating the effect of food systems innovation on the Sustainable Development Goals

    Get PDF
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival

    Management regime and habitat response influence abundance of regal fritillary (Speyeria idalia) in tallgrass prairie

    Get PDF
    The \u3e2,570,000-ha Flint Hills ecoregion of Kansas, USA, harbors the largest remaining contiguous tract of tallgrass prairie in North America, a unique system, as the remainder of North America’s tallgrass prairie has succumbed to development and conversion. Consequently, the loss and degradation of tallgrass prairie has reduced populations of many North American prairie-obligate species including the regal fritillary (Speyeria idalia) butterfly. Population abundance and occupied range of regal fritillary have declined \u3e99%, restricting many populations to isolated, remnant patches of tallgrass prairie. Such extensive decline has resulted in consideration of the regal fritillary for protection under the Endangered Species Act. Although it is widely accepted that management practices such as fire, grazing, and haying are necessary to maintain prairie ecosystems, reported responses by regal fritillary to these management regimes have been ambiguous.We tested effects of prescribed fire across short, moderate, and long fire-return intervals as well as grazing and haying management treatments on regal fritillary density. We also tested the relative influence of habitat characteristics created by these management regimes by measuring density of an obligate host plant (Viola spp.) and canopy cover of woody vegetation, grasses, forbs/ferns, bare ground, and litter. We found density was at least 1.6 times greater in sites burned with a moderate fire-return interval vs. sites burned with short and long fire-return intervals. Overall management regardless of fire-return interval did not have an effect on density. Percent cover of grass had the strongest positive association, while percent cover of woody vegetation had the greatest negative effect on density. Our results indicate that patch-burning is a viable and perhaps even ideal management strategy for regal fritillary in tallgrass prairie landscapes. Additionally, these results elucidate the importance of fire, particularly when applied at moderate-return intervals to regal fritillary, and corroborate a growing suite of studies that suggest fire is perhaps not as detrimental to populations of regal fritillary as previously believed

    The assessment of filler beam bridge decks without transverse reinforcement

    No full text
    Available from British Library Document Supply Centre- DSC:7768.295(TRL-RRS--383) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Plasticity Changes in Central Auditory Systems of School-Age Children Following a Brief Training With a Remote Microphone System.

    No full text
    The objective of this study was to investigate whether a brief speech-in-noise training with a remote microphone (RM) system (favorable listening condition) would contribute to enhanced post-training plasticity changes in the auditory system of school-age children. Before training, event-related potentials (ERPs) were recorded from 49 typically developing children, who actively identified two syllables in quiet and in noise (+5 dB signal-to-noise ratio [SNR]). During training, children completed the same syllable identification task as in the pre-training noise condition, but received feedback on their performance. Following random assignment, half of the sample used an RM system during training (experimental group), while the other half did not (control group). That is, during training' children in the experimental group listened to a more favorable speech signal (+15 dB SNR) than children from the control group (+5 dB SNR). ERPs were collected after training at +5 dB SNR to evaluate the effects of training with and without the RM system. Electrical neuroimaging analyses quantified the effects of training in each group on ERP global field power (GFP) and topography, indexing response strength and network changes, respectively. Behavioral speech-perception-in-noise skills of children were also evaluated and compared before and after training. We hypothesized that training with the RM system (experimental group) would lead to greater enhancement of GFP and greater topographical changes post-training than training without the RM system (control group). We also expected greater behavioral improvement on the speech-perception-in-noise task when training with than without the RM system. GFP was enhanced after training only in the experimental group. These effects were observed on early time-windows corresponding to traditional P1-N1 (100 to 200 msec) and P2-N2 (200 to 400 msec) ERP components. No training effects were observed on response topography. Finally, both groups increased their speech-perception-in-noise skills post-training. Enhanced GFP after training with the RM system indicates plasticity changes in the neural representation of sound resulting from listening to an enriched auditory signal. Further investigation of longer training or auditory experiences with favorable listening conditions is needed to determine if that results in long-term speech-perception-in-noise benefits

    All-optical control of the exciton g-factor in InAs/GaAs quantum dots

    No full text
    In this work, we show that an electric field can be used to tune the g-factor in (In,Ga)As quantum dots and that one can even change its sign. We measure the degree of circular polarization of photoluminescence of quantum dots in a magnetic field. The quantum dots are grown in the center of a GaAs p–i–n structure and they experience, therefore, a built-in electric field. This electric field can be compensated by photo-created charge carriers. The circular polarization changes as the excitation density is increased, and eventually changes its sign, which is interpreted as a change of sign of the exciton g-factor. This sign change is associated with the electric field, since the Stark shift in the photoluminescence spectrum occurs in the same excitation density range as the polarization sign change. Furthermore, we extract a longitudinal spin relaxation time T1 of 10.1 ns. A time-resolved Kerr rotation spectroscopy measurement yields an in-plane g-factor for the electron in the range 0.3–0.4 and a decoherence time T2 in the range 500–800 ps
    corecore