98 research outputs found

    Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas.

    Get PDF
    Non-coding microRNAs (miRs) are a vital component of post-transcriptional modulation of protein expression and, like coding mRNAs harbour oncogenic properties. However, the mechanisms governing miR expression and the identity of the affected transcripts remain poorly understood. Here we identify the inositol phosphatase SHIP1 as a bonafide target of the oncogenic miR-155. We demonstrate that in diffuse large B cell lymphoma (DLBCL) elevated levels of miR-155, and consequent diminished SHIP1 expression are the result of autocrine stimulation by the pro-inflammatory cytokine tumour necrosis factor a (TNFalpha). Anti-TNFalpha regimen such as eternacept or infliximab were sufficient to reduce miR-155 levels and restored SHIP1 expression in DLBCL cells with an accompanying reduction in cell proliferation. Furthermore, we observed a substantial decrease in tumour burden in DLBCL xenografts in response to eternacept. These findings strongly support the concept that cytokine-regulated miRs can function as a crucial link between inflammation and cancer, and illustrate the feasibility of anti-TNFalpha therapy as a novel and immediately accessible (co)treatment for DLBCL

    Regulation of Class-Switch Recombination and Plasma Cell Differentiation by Phosphatidylinositol 3-Kinase Signaling

    Get PDF
    SummaryClass-switch recombination (CSR) is essential for humoral immunity. However, the regulation of CSR is not completely understood. Here we demonstrate that phosphatidylinositol 3-kinase (PI3K) actively suppressed the onset and frequency of CSR in primary B cells. Consistently, mice lacking the lipid phosphatase, PTEN, in B cells exhibited a hyper-IgM condition due to impaired CSR, which could be restored in vitro by specific inhibition of PI3Kδ. Inhibition of CSR by PI3K was partially dependent on the transcription factor, BLIMP1, linking plasma cell commitment and cessation of CSR. PI3K-dependent activation of the serine-threonine kinase, Akt, suppressed CSR, in part, through the inactivation of the Forkhead Box family (Foxo) of transcription factors. Reduced PI3K signaling enhanced the expression of AID (activation-induced cytidine deaminase) and accelerated CSR. However, ectopic expression of AID could not fully overcome inhibition of CSR by PI3K, suggesting that PI3K regulates both the expression and function of AID

    Act1, a Negative Regulator in CD40- and BAFF-Mediated B Cell Survival

    Get PDF
    AbstractTNF receptor (TNFR) superfamily members, CD40, and BAFFR play critical roles in B cell survival and differentiation. Genetic deficiency in a novel adaptor molecule, Act1, for CD40 and BAFF results in a dramatic increase in peripheral B cells, which culminates in lymphadenopathy and splenomegaly, hypergammaglobulinemia, and autoantibodies. While the B cell-specific Act1 knockout mice displayed a similar phenotype with less severity, the pathology of the Act1-deficient mice was mostly blocked in CD40-Act1 and BAFF-Act1 double knockout mice. CD40- and BAFF-mediated survival is significantly increased in Act1-deficent B cells, with stronger IÎşB phosphorylation, processing of NF-ÎşB2 (p100/p52), and activation of JNK, ERK, and p38 pathways, indicating that Act1 negatively regulates CD40- and BAFF-mediated signaling events. These findings demonstrate that Act1 plays an important role in the homeostasis of B cells by attenuating CD40 and BAFFR signaling

    CD98hc facilitates B cell proliferation and adaptive humoral immunity.

    Get PDF
    The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates

    Complement C3d Conjugation to Anthrax Protective Antigen Promotes a Rapid, Sustained, and Protective Antibody Response

    Get PDF
    B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA) to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax™) consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA) imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4) of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation

    Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline.

    Get PDF
    This article is the work product of the Continuous Glucose Monitor and Automated Insulin Dosing Systems in the Hospital Consensus Guideline Panel, which was organized by Diabetes Technology Society and met virtually on April 23, 2020. The guideline panel consisted of 24 international experts in the use of continuous glucose monitors (CGMs) and automated insulin dosing (AID) systems representing adult endocrinology, pediatric endocrinology, obstetrics and gynecology, advanced practice nursing, diabetes care and education, clinical chemistry, bioengineering, and product liability law. The panelists reviewed the medical literature pertaining to five topics: (1) continuation of home CGMs after hospitalization, (2) initiation of CGMs in the hospital, (3) continuation of AID systems in the hospital, (4) logistics and hands-on care of hospitalized patients using CGMs and AID systems, and (5) data management of CGMs and AID systems in the hospital. The panelists then developed three types of recommendations for each topic, including clinical practice (to use the technology optimally), research (to improve the safety and effectiveness of the technology), and hospital policies (to build an environment for facilitating use of these devices) for each of the five topics. The panelists voted on 78 proposed recommendations. Based on the panel vote, 77 recommendations were classified as either strong or mild. One recommendation failed to reach consensus. Additional research is needed on CGMs and AID systems in the hospital setting regarding device accuracy, practices for deployment, data management, and achievable outcomes. This guideline is intended to support these technologies for the management of hospitalized patients with diabetes
    • …
    corecore