5 research outputs found

    Cord blood IgG and the risk of severe Plasmodium falciparum malaria in the first year of life

    Get PDF
    Young infants are less susceptible to severe episodes of malaria but the targets and mechanisms of protection are not clear. Cord blood antibodies may play an important role in mediating protection but many studies have examined their association with the outcome of infection or non-severe malaria. Here, we investigated whether cord blood IgG to Plasmodium falciparum merozoite antigens and antibody-mediated effector functions were associated with reduced odds of developing severe malaria at different time points during the first year of life. We conducted a case-control study of well-defined severe falciparum malaria nested within a longitudinal birth cohort of Kenyan children. We measured cord blood total IgG levels against five recombinant merozoite antigens and antibody function in the growth inhibition activity and neutrophil antibody-dependent respiratory burst assays. We also assessed the decay of maternal antibodies during the first 6months of life. The mean antibody half-life range was 2.51months (95% confidence interval (CI): 2.19-2.92) to 4.91months (95% CI: 4.47-6.07). The rate of decline of maternal antibodies was inversely proportional to the starting concentration. The functional assay of antibody-dependent respiratory burst activity predicted significantly reduced odds of developing severe malaria during the first 6months of life (Odds ratio (OR) 0.07, 95% CI: 0.007-0.74, P=0.007). Identification of the targets of antibodies mediating antibody-dependent respiratory burst activity could contribute to the development of malaria vaccines that protect against severe episodes of malaria in early infancy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effects of Forest Management on Amphibians and Reptiles in Missouri Ozark Forests

    No full text
    As part of the Missouri Ozark Forest Ecosystem Project (MOFEP), we experimentally evaluated the impacts of forest management on the relative abundance of amphibians and reptiles in Missouri\u27s Ozark forests (U.S.A.). Using large study sites (average size of 400 ha) as the experimental unit, we tested the effects of uneven-aged and even-aged forest management treatments compared with no-harvest management (i.e., control) on the relative abundance of 13 focal amphibian and reptile species. Within even-aged management sites, we also focused on the local-scale effects of clearcutting on these species by comparing relative abundance among plots located within clearcut stands, 50 m away from clearcut stands, and 200 m away from clearcut stands. Pretreatment sampling of species abundance occurred from 1992 through 1995, and post-treatment sampling occurred from 1997 through 2000. At the landscape scale, treatment significantly affected the abundance of Bufo americanus. This species declined less on even-aged management sites than on control sites, but the general decline on all sites suggests that other factors may have contributed to this result. Within even-aged management sites, most amphibian species declined and some reptile species increased relative to pretreatment abundances within clearcut stands. We found significant effects of distance from clearcut for two amphibian species, Ambystoma maculatum and Rana clamitans, and two reptile species, Scincella lateralis and Sceloporus undulatus. In general, we conclude that clearcuts within even-aged management sites locally affected amphibian and reptile species but, at a larger spatial scale, we did not detect significant effects of even-aged and uneven-aged forest management. These findings represent relatively short-term data but suggest that forest management and maintenance of biodiversity may be compatible when relatively small amounts of the landscape are disturbed

    The sequence and analysis of duplication-rich human chromosome 16

    Get PDF
    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.Joel Martin, Cliff Han, Laurie A. Gordon, Astrid Terry, Shyam Prabhakar, Xinwei She, Gary Xie, Uffe Hellsten, Yee Man Chan, Michael Altherr, Olivier Couronne, Andrea Aerts, Eva Bajorek, Stacey Black, Heather Blumer, Elbert Branscomb, Nancy C. Brown, William J. Bruno, Judith M. Buckingham, David F. Callen, Connie S. Campbell, Mary L. Campbell, Evelyn W. Campbell, Chenier Caoile, Jean F. Challacombe, Leslie A. Chasteen, Olga Chertkov, Han C. Chi, Mari Christensen, Lynn M. Clark, Judith D. Cohn, Mirian Denys, John C. Detter, Mark Dickson, Mira Dimitrijevic-Bussod, Julio Escobar, Joseph J. Fawcett, Dave Flowers, Dea Fotopulos, Tijana Glavina, Maria Gomez, Eidelyn Gonzales, David Goodstein, Lynne A. Goodwin, Deborah L. Grady, Igor Grigoriev, Matthew Groza, Nancy Hammon, Trevor Hawkins, Lauren Haydu, Carl E. Hildebrand, Wayne Huang, Sanjay Israni, Jamie Jett, Phillip B. Jewett, Kristen Kadner, Heather Kimball, Arthur Kobayashi, Marie-Claude Krawczyk, Tina Leyba, Jonathan L. Longmire, Frederick Lopez, Yunian Lou, Steve Lowry, Thom Ludeman, Chitra F. Manohar, Graham A. Mark, Kimberly L. McMurray, Linda J. Meincke, Jenna Morgan, Robert K. Moyzis, Mark O. Mundt, A. Christine Munk, Richard D. Nandkeshwar, Sam Pitluck, Martin Pollard Paul Predki, Beverly Parson-Quintana, Lucia Ramirez, Sam Rash, James Retterer, Darryl O. Ricke, Donna L. Robinson, Alex Rodriguez, Asaf Salamov, Elizabeth H. Saunders, Duncan Scott, Timothy Shough, Raymond L. Stallings, Malinda Stalvey, Robert D. Sutherland, Roxanne Tapia, Judith G. Tesmer, Nina Thayer, Linda S. Thompson, Hope Tice, David C. Torney, Mary Tran-Gyamfi, Ming Tsai, Levy E. Ulanovsky, Anna Ustaszewska, Nu Vo, P. Scott White, Albert L. Williams, Patricia L. Wills, Jung-Rung Wu, Kevin Wu, Joan Yang, Pieter DeJong, David Bruce, Norman A. Doggett, Larry Deaven, Jeremy Schmutz, Jane Grimwood, Paul Richardson, Daniel S. Rokhsar, Evan E. Eichler, Paul Gilna, Susan M. Lucas, Richard M. Myers, Edward M. Rubin and Len A. Pennacchi
    corecore