62 research outputs found

    Discovery of a ~5 day characteristic timescale in the Kepler power spectrum of Zw 229-15

    Full text link
    We present time series analyses of the full Kepler dataset of Zw 229-15. This Kepler light curve --- with a baseline greater than three years, composed of virtually continuous, evenly sampled 30-minute measurements --- is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al. (2014), does not need evenly-sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly both also show strong bends ({\Delta}{\alpha} ~ 2) at timescales of ~5 days, a feature similar to those seen in the X-ray PSDs of AGN but never before in the optical. This observed ~5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light-crossing, dynamical or thermal timescales, depending on the assumed value of the accretion disk size and on unobserved disk parameters such as {\alpha} and H/R. This timescale is not consistent with the viscous timescale, which would be years in a ~10^7 Solar mass AGN such as Zw 229-15. However there must be a second bend on long (>~1 year) timescales, and that feature could be associated with the viscous timescale.Comment: 10 pages, 5 figures, 1 table. To appear in the Astrophysical Journal, Part

    X-ray vs. Optical Variations in the Seyfert 1 Nucleus NGC 3516: A Puzzling Disconnectedness

    Full text link
    We present optical broadband (B and R) observations of the Seyfert 1 nucleus NGC 3516, obtained at Wise Observatory from March 1997 to March 2002, contemporaneously with X-ray 2-10 keV measurements with RXTE. With these data we increase the temporal baseline of this dataset to 5 years, more than triple to the coverage we have previously presented for this object. Analysis of the new data does not confirm the 100-day lag of X-ray behind optical variations, tentatively reported in our previous work. Indeed, excluding the first year's data, which drive the previous result, there is no significant correlation at any lag between the X-ray and optical bands. We also find no correlation at any lag between optical flux and various X-ray hardness ratios. We conclude that the close relation observed between the bands during the first year of our program was either a fluke, or perhaps the result of the exceptionally bright state of NGC 3516 in 1997, to which it has yet to return. Reviewing the results of published joint X-ray and UV/optical Seyfert monitoring programs, we speculate that there are at least two components or mechanisms contributing to the X-ray continuum emission up to 10 keV: a soft component that is correlated with UV/optical variations on timescales >1 day, and whose presence can be detected when the source is observed at low enough energies (about 1 keV), is unabsorbed, or is in a sufficiently bright phase; and a hard component whose variations are uncorrelated with the UV/optical.Comment: 9 pages, AJ, in pres

    High Temporal Resolution XMM Monitoring of PKS 2155-304

    Full text link
    The bright, strongly variable BL Lac object PKS 2155-304 was observed by XMM for two essentially uninterrupted periods of ~11 and 16 hr on 30-31 May 2000. The strongest variations occurred in the highest energy bands. After scaling for this effect, the three softest bands (0.1-1.7 keV) showed strong correlation with no measurable lag to reliable limits of \tau \ls 0.3 hr. However, the hardest band (~3 keV) was less well-correlated with the other three, especially on short time scales, showing deviations of ~10-20% in ~1 hr although, again, no significant interband lag was detected. This result and examination of previous ASCA and BeppoSAX cross-correlation functions suggest that previous claims of soft lags on time scales of 0.3-4 hr could well be an artifact of periodic interruptions due to Earth-occultation every 1.6 hr. Previous determinations of the magnetic field/bulk Lorentz factor were therefore premature, as these data provide only a lower limit of B \gamma^{1/3} \gs 2.5 G. The hardest band encompasses the spectral region above the high-energy break; its enhanced variability could be indicating that the break energy of the synchrotron spectrum, and therefore of the underlying electron energy distribution, changes independently of the lower energies.Comment: 13 pages, 3 figures, accepted by Ap

    Contrasting the UV and X-ray O VI Column Density Inferred for the Outflow in NGC 5548

    Full text link
    We compare X-ray and UV spectroscopic observations of NGC 5548. Both data sets show O VI absorption troughs associated with the AGN outflow from this galaxy. We find that the robust lower limit on the column density of the O VI X-ray trough is seven times larger than the column density found in a study of the O VI UV troughs. This discrepancy suggests that column densities inferred for UV troughs of Seyfert outflows are often severely underestimated. We identify the physical limitations of the UV Gaussian modeling as the probable explanation of the O VI column density discrepancy. Specifically, Gaussian modeling cannot account for a velocity dependent covering fraction, and it is a poor representation for absorption associated with a dynamical outflow. Analysis techniques that use a single covering fraction value for each absorption component suffer from similar limitations. We conclude by suggesting ways to improve the UV analysis.Comment: 16 pages, 1 figure, accepted for publication in Ap

    KSwAGS: A Swift X-ray and UV Survey of the Kepler Field. I

    Get PDF
    We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of ~6 square degrees of the Kepler field using the Swift XRT and UVOT. We detect 93 unique X-ray sources with S/N>3 with the XRT, of which 60 have observed UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the X-ray to optical flux ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or AGN with certainty, we construct SEDs using the 2MASS, UBV and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields.Comment: Accepted for publication in the Astronomical Journal. 19 pages, 8 figures, 3 table

    Evidence for Rapid Iron K_alpha Line Flux Variability in MCG--6-30-15

    Full text link
    This paper employs direct spectral fitting of individual orbital data in order to measure rapid X-ray iron K_alpha line and continuum spectral slope variations in Seyfert 1 galaxies with unprecedented temporal resolution. Application of this technique to a long RXTE observation of MCG--6-30-15 indicates that the line flux does vary on short (~1d) timescales, but that these variations are not correlated with changes in the continuum flux or slope. These rapid variations indicate that the line does indeed originate close to the black hole, confirming predictions based on its very broad profile. However, the lack of a correlation with the continuum presents problems for models in which the line variations are driven by those in the continuum, modified only by light-travel time effects. Instead, it may be that the line responds according to a physical process with a different time scale, such as ionization instabilities in the disk, or perhaps that the geometry and physical picture is more complex than implied by the simplest disk-corona models. These data also indicate that the slope of the underlying power-law continuum (Gamma) shows strong variability and is tightly correlated with the continuum flux in the sense that the spectrum steepens as the source brightens. All of these results have been checked with extensive simulations, which also indicated that a spurious correlation between Gamma and Compton reflection fraction (R) will result if these quantities are measured from the same spectra. This casts serious doubts on previous claims of such a Gamma-R correlation.Comment: Accepted for publication in Ap

    The Remarkably Featureless High Resolution X-ray Spectrum of Mrk 478

    Full text link
    An observation of Mrk 478 using the Chandra Low Energy Transmission Grating Spectrometer is presented. The source exhibited 30-40% flux variations on timescales of order 10000 s together with a slow decline in the spectral softness over the full 80 ks observation. The 0.15--3.0 keV spectrum is well fitted by a single power law with photon index of Gamma = 2.91 +/- 0.03. Combined with high energy data from BeppoSAX, the spectrum from 0.15 to 10 keV is well fit as the sum of two power laws with Gamma = 3.03 +/- 0.04, which dominates below 2 keV and 1.4 +/- 0.2, which dominates above 2 keV (quoting 90% confidence uncertainties). No significant emission or absorption features are detected in the high resolution spectrum, supporting our previous findings using the Extreme Ultraviolet Explorer but contradicting the claims of emission lines by Hwang & Bowyer (1997). There is no evidence of a warm absorber, as found in the high resolution spectra of many Sy 1 galaxies including others classified as narrow line Sy 1 galaxies such as Mrk 478. We suggest that the X-ray continuum may result from Comptonization of disk thermal emission in a hot corona through a range of optical depths.Comment: 21 pages, 7 figures; accepted for publication in the Astronomical Journa

    X-ray Spectral Variability and Rapid Variability of the Soft X-ray Spectrum Seyfert 1 Galaxies Ark 564 and Ton S180

    Get PDF
    The bright, soft X-ray spectrum Seyfert 1 galaxies Ark 564 and Ton S180 were monitored for 35 days and 12 days with ASCA and RXTE (and EUVE for Ton S180). The short time scale (hours-days) variability patterns were very similar across energy bands, with no evidence of lags between any of the energy bands studied. The fractional variability amplitude was almost independent of energy band. It is difficult to simultaneously explain soft Seyferts stronger variability, softer spectra, and weaker energy-dependence of the variability relative to hard Seyferts. The soft and hard band light curves diverged on the longest time scales probed, consistent with the fluctuation power density spectra that showed relatively greater power on long time scales in the softest bands. The simplest explanation is that a relatively hard, rapidly-variable component dominates the total X-ray spectrum and a slowly-variable soft excess is present in the lowest energy channels of ASCA. Although it would be natural to identify the latter with an accretion disk and the former with a corona surrounding it, a standard thin disk could not get hot enough to radiate significantly in the ASCA band, and the observed variability time scales are much too short. The hard component may have a more complex shape than a pure power-law. The most rapid factor of 2 flares and dips occurred within ~1000 sec in Ark 564 and a bit more slowly in Ton S180. The speed of the luminosity changes rules out viscous or thermal processes and limits the size of the individual emission regions to <~15 Schwarzschild radii (and probably much less), that is, to either the inner disk or small regions in a corona
    • …
    corecore