15 research outputs found

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    Development of SiGe arrays for visible-near IR imaging applications

    No full text
    SiGe based focal plane arrays offer a low cost alternative for developing visible- near-infrared focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based foal plane arrays take advantage of silicon based technology that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper will discuss performance characteristics for the SiGe based VIS-NIR Sensors for a variety of defense and commercial applications using small unit cell size and compare performance with InGaAs, InSb, and HgCdTe IRFPA's. We will present results on the approach and device design for reducing the dark current in SiGe detector arrays. We will discuss electrical and optical properties of SiGe arrays at room temperature and as a function of temperature. We will also discuss future integration path for SiGe devices with other Silicon-based technology for defense and Commercial Applications

    Development of low dark current SiGe-detector arrays for visible-NIR imaging sensor

    No full text
    SiGe based focal plane arrays offer a low cost alternative for developing visible- near-infrared focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based foal plane arrays take advantage of silicon based technology that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper will discuss performance characteristics for the SiGe based VIS-NIR Sensors for a variety of defense and commercial applications using small unit cell size and compare performance with InGaAs, InSb, and HgCdTe IRFPA's. We will present results on the approach and device design for reducing the dark current in SiGe detector arrays. We will discuss electrical and optical properties of SiGe arrays at room temperature and as a function of temperature. We will also discuss future integration path for SiGe devices with Si-MEMS Bolometers. © 2010 Copyright SPIE - The International Society for Optical Engineering

    The Emergency Medicine Physician Workforce: Projections for 2030.

    Get PDF
    STUDY OBJECTIVE: The goals of this study were to determine the current and projected supply in 2030 of contributors to emergency care, including emergency residency-trained and board-certified physicians, other physicians, nurse practitioners, and physician assistants. In addition, this study was designed to determine the current and projected demand for residency-trained, board-certified emergency physicians. METHODS: To forecast future workforce supply and demand, sources of existing data were used, assumptions based on past and potential future trends were determined, and a sensitivity analysis was conducted to determine how the final forecast would be subject to variance in the baseline inputs and assumptions. Methods included: (1) estimates of the baseline workforce supply of physicians, nurse practitioners, and physician assistants; (2) estimates of future changes in the raw numbers of persons entering and leaving that workforce; (3) estimates of the productivity of the workforce; and (4) estimates of the demand for emergency care services. The methodology assumes supply equals demand in the base year and estimates the change between the base year and 2030; it then compares supply and demand in 2030 under different scenarios. RESULTS: The task force consensus was that the most likely future scenario is described by: 2% annual graduate medical education growth, 3% annual emergency physician attrition, 20% encounters seen by a nurse practitioner or physician assistant, and 11% increase in emergency department visits relative to 2018. This scenario would result in a surplus of 7,845 emergency physicians in 2030. CONCLUSION: The specialty of emergency medicine is facing the likely oversupply of emergency physicians in 2030. The factors leading to this include the increasing supply of and changing demand for emergency physicians. An organized, collective approach to a balanced workforce by the specialty of emergency medicine is imperative

    Characterization of sige-detector arrays for visible-NIR imaging sensor applications

    No full text
    SiGe based focal plane arrays offer a low cost alternative for developing visible- near-infrared focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based foal plane arrays take advantage of silicon based technology that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper discusses performance characteristics for the SiGe based VIS-NIR Sensors for a variety of defense and commercial applications using small unit cell size and compare performance with InGaAs, InSb, and HgCdTe IRFPA's. We present results on the approach and device design for reducing the dark current in SiGe detector arrays. The electrical and optical properties of SiGe arrays at room temperature are discussed. We also discuss future integration path for SiGe devices with Si-MEMS Bolometers

    Development of low dark current SiGe-detector arrays for visible-NIR imaging sensor

    No full text
    SiGe based Focal Plane Arrays offer a low cost alternative for developing visible- NIR focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based IRFPA's will take advantage of Silicon based technology, that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper discusses performance comparison for the SiGe based VIS-NIR Sensor with performance characteristics of InGaAs, InSb, and HgCdTe based IRFPA's. Various approaches including device designs are discussed for reducing the dark current in SiGe detector arrays; these include Superlattice, Quantum dot and Buried junction designs that have the potential of reducing the dark current by several orders of magnitude. The paper also discusses approaches to reduce the leakage current for small detector size and fabrication techniques. In addition several innovative approaches that have the potential of increasing the spectral response to 1.8 microns and beyond

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country
    corecore