20,506 research outputs found

    Analytic approach to nuclear rotational states: The role of spin - A minimal model -

    Full text link
    We use a simple field theory model to investigate the role of the nucleon spin for the magnetic sum rules associated with the low-lying collective scissors mode in deformed nuclei. Various constraints from rotational symmetry are elucidated and discussed. We put special emphasis on the coupling of the spin part of the M1 operator to the low lying collective modes, and investigate how this coupling changes the sum rules.Comment: 15 pages, 4 figure

    Explorer Satellite Electronics

    Get PDF
    A discussion is presented of the design restrictions and the philosophy which enabled the Explorer satellites to be first during the IGY to reveal the presence of a belt of intense cosmic radiation encircling the earth's equator. In addition, an indication of the amount and momentum of cosmic dust in the solar system was obtained from the Explorers. Methods used to obtain reliability in the transducing and communications system are described, together with interpretations of space-environment information as deduced from the narrow-band telemetry

    Convenient Labelling Technique for Mass Spectrometry - Acid Catalyzed Deuterium and Oxygen-18 Exchange via Gas-liquid Chromatography

    Get PDF
    Mass spectrometry labelling technique - acid catalyzed deuterium and oxygen 18 exchange by gas-liquid chromatograph

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    Antiferromagnetic ordering of energy levels for spin ladder with four-spin cyclic exchange: Generalization of the Lieb-Mattis theorem

    Full text link
    The Lieb-Mattis theorem is generalized to an antiferromagnetic spin-ladder model with four-spin cyclic exchange interaction. We prove that for J>2K, the antiferromagnetic ordering of energy levels takes place separately in two sectors, which remain symmetric and antisymmetric under the reflection with respect to the longitudinal axis of the ladder. We prove also that at the self-dual point J=2K, the Lieb-Mattis rule holds in the sectors with fixed number of rung singlets. In both cases, it agrees with the similar rule for Haldane chain with appropriate spin number.Comment: 4 pages, some references updated and added, typos corrected, to appear in Phys. Rev.

    Production of tau tau jj final states at the LHC and the TauSpinner algorithm: the spin-2 case

    Full text link
    The TauSpinner algorithm is a tool that allows to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events. With the help of weights Ï„\tau-lepton production or decay processes can be modified accordingly to a new physics model. In a recent paper a new version TauSpinner ver.2.0.0 has been presented which includes a provision for introducing non-standard states and couplings and study their effects in the vector-boson-fusion processes by exploiting the spin correlations of Ï„\tau-lepton pair decay products in processes where final states include also two hard jets. In the present paper we document how this can be achieved taking as an example the non-standard spin-2 state that couples to Standard Model particles and tree-level matrix elements with complete helicity information included for the parton-parton scattering amplitudes into a Ï„\tau-lepton pair and two outgoing partons. This implementation is prepared as the external (user provided) routine for the TauSpinner algorithm. It exploits amplitudes generated by MadGraph5 and adopted to the TauSpinner algorithm format. Consistency tests of the implemented matrix elements, reweighting algorithm and numerical results for observables sensitive to Ï„\tau polarization are presented.Comment: 17 pages, 6 figures; version published in EPJ

    Coupled Cluster Treatment of the Shastry-Sutherland Antiferromagnet

    Full text link
    We consider the zero-temperature properties of the spin-half two-dimensional Shastry-Sutherland antiferromagnet by using a high-order coupled cluster method (CCM) treatment. We find that this model demonstrates various groundstate phases (N\'{e}el, magnetically disordered, orthogonal dimer), and we make predictions for the positions of the phase transition points. In particular, we find that orthogonal-dimer state becomes the groundstate at J2d/J1∼1.477{J}^{d}_2/J_1 \sim 1.477. For the critical point J2c/J1J_2^{c}/J_1 where the semi-classical N\'eel order disappears we obtain a significantly lower value than J2d/J1J_2^{d}/J_1, namely, J2c/J1{J}^{c}_2/J_1 in the range [1.14,1.39][1.14, 1.39]. We therefore conclude that an intermediate phase exists between the \Neel and the dimer phases. An analysis of the energy of a competing spiral phase yields clear evidence that the spiral phase does not become the groundstate for any value of J2J_2. The intermediate phase is therefore magnetically disordered but may exhibit plaquette or columnar dimer ordering.Comment: 6 pages, 5 figure
    • …
    corecore