57 research outputs found

    Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

    Get PDF
    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate

    Characterizing and Diminishing Autofluorescence in Formalin-fixed Paraffin-embedded Human Respiratory Tissue

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1369/0022155414531549Tissue autofluorescence frequently hampers visualization of immunofluorescent markers in formalin-fixed paraffin-embedded respiratory tissues. We assessed nine treatments reported to have efficacy in reducing autofluorescence in other tissue types. The three most efficacious were Eriochrome black T, Sudan black B and sodium borohydride, as measured using white light laser confocal Ʌ² (multi-lambda) analysis. We also assessed the impact of steam antigen retrieval and serum application on human tracheal tissue autofluorescence. Functionally fitting this Ʌ² data to 2-dimensional Gaussian surfaces revealed that steam antigen retrieval and serum application contribute minimally to autofluorescence and that the three treatments are disparately efficacious. Together, these studies provide a set of guidelines for diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. Additionally, these characterization techniques are transferable to similar questions in other tissue types, as demonstrated on frozen human liver tissue and paraffin-embedded mouse lung tissue fixed in different fixatives.NIHNIAI

    Distinct Interactions of 2′- and 3′-O-(N-Methyl)anthraniloyl-Isomers of ATP and GTP with the Adenylyl Cyclase Toxin of Bacillus anthracis, Edema Factor

    Get PDF
    Anthrax disease is caused by the spore-forming bacterium, Bacillus anthracis. Bacillus anthracis produces a calmodulin-activated adenylyl cyclase (AC) toxin, edema factor (EF). Through excessive cAMP accumulation EF disrupts host defence. In a recent study we showed that various 2′(3′)-O-N-(methyl)anthraniloyl (MANT)-substituted nucleoside 5′-triphosphates are potent inhibitors (Ki values in the 0.1-5 μM range) of purified EF. Upon interaction with calmodulin we observed efficient fluorescence resonance energy transfer (FRET) between tryptophan and tyrosine residues of EF and the MANT-group of MANT-ATP. Molecular modelling suggested that both the 2′- and 3′-MANT-isomers can bind to EF. The aim of the present study was to examine the effects of defined 2′- and 3′-MANT-isomers of ATP and GTP on EF. 3′-MANT-2′-deoxy-ATP inhibited EF more potently than 2′-MANT-3′-deoxy-ATP, whereas the opposite was the case for the corresponding GTP analogs. Calmodulin-dependent direct MANT-fluorescence and FRET was much larger with 2′-MANT-3′-deoxy-ATP and 2′-MANT-3′-deoxy-GTP compared to the corresponding 3′-MANT-2′-deoxy-isomers and the 2′(3′)-racemates. Ki values of MANT-nucleotides for inhibition of catalysis correlated with Kd values of MANT-nucleotides in FRET studies. Molecular modelling indicated different positioning of the MANT-group in 2′-MANT-3′-deoxy-ATP/GTP and 3′-MANT-2′-deoxy-ATP/GTP bound to EF. Collectively, EF interacts differentially with 2′-MANT- and 3′-MANT-isomers of ATP and GTP, indicative for conformational flexibility of the catalytic site and offering a novel approach for the development of potent and selective EF inhibitors. Moreover, our present study may serve as a general model of how to use MANT-nucleotide isomers for the analysis of the molecular mechanisms of nucleotide/protein interactions

    Multicenter study evaluating the Vitek MS system for identification of medically important yeasts

    Get PDF
    The optimal management of fungal infections is correlated with timely organism identification. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is revolutionizing the identification of yeasts isolated from clinical specimens. We present a multicenter study assessing the performance of the Vitek MS system (bioMérieux) in identifying medically important yeasts. A collection of 852 isolates was tested, including 20 Candida species (626 isolates, including 58 C. albicans, 62 C. glabrata, and 53 C. krusei isolates), 35 Cryptococcus neoformans isolates, and 191 other clinically relevant yeast isolates; in total, 31 different species were evaluated. Isolates were directly applied to a target plate, followed by a formic acid overlay. Mass spectra were acquired using the Vitek MS system and were analyzed using the Vitek MS v2.0 database. The gold standard for identification was sequence analysis of the D2 region of the 26S rRNA gene. In total, 823 isolates (96.6%) were identified to the genus level and 819 isolates (96.1%) were identified to the species level. Twenty-four isolates (2.8%) were not identified, and five isolates (0.6%) were misidentified. Misidentified isolates included one isolate of C. albicans (n = 58) identified as Candida dubliniensis, one isolate of Candida parapsilosis (n = 73) identified as Candida pelliculosa, and three isolates of Geotrichum klebahnii (n = 6) identified as Geotrichum candidum. The identification of clinically relevant yeasts using MS is superior to the phenotypic identification systems currently employed in clinical microbiology laboratories

    Multilaboratory Comparison of Pneumococcal Multiplex Immunoassays Used in lmmunosurveillance of Streptococcus pneumoniae across Europe

    Get PDF
    Surveillance studies are required to estimate the impact of pneumococcal vaccination in both children and the elderly across Europe. The World Health Organization (WHO) recommends use of enzyme immunoassays (EIAs) as standard methods for immune surveillance of pneumococcal antibodies. However, as levels of antibodies to multiple serotypes are monitored in thousands of samples, a need for a less laborious and more flexible method has evolved. Fluorescent-bead-based multiplex immunoassays (MIAs) are suitable for this purpose. An increasing number of public health and diagnostic laboratories use MIAs, although the method is not standardized and no international quality assessment scheme exists. The EU Pneumo Multiplex Assay Consortium was initiated in 2013 to advance harmonization of MIAs and to create an international quality assessment scheme. In a multilaboratory comparison organized by the consortium, agreement among nine laboratories that used their own optimized MIA was assessed on a panel of 15 reference sera for 13 pneumococcal serotypes with the new WHO standard 007sp. Agreement was assessed in terms of assay accuracy, reproducibility, repeatability, precision, and bias. The results indicate that the evaluated MIAs are robust and reproducible for measurement of vaccine-induced antibody responses. However, some serotype-specific variability in the results was observed in comparisons of polysaccharides from different sources and of different conjugation methods, especially for serotype 4. On the basis of the results, the consortium has contributed to the harmonization of MIA protocols to improve reliability of immune surveillance of Streptococcus pneumoniae

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore