47 research outputs found

    Influence of patient and tumor characteristics on therapy persistence with letrozole in postmenopausal women with advanced breast cancer: results of the prospective observational EvAluate-TM study

    Get PDF
    Background: Treatment of postmenopausal, hormone receptor-positive metastatic breast cancer (MBC) patients varies despite clear therapy guidelines, favoring endocrine treatment (ET). Aim of this study was to analyze persistence of palliative aromatase inhibitor (AI) monotherapy in MBC patients. Methods: EvAluate-TM is a prospective, multicenter, noninterventional study to evaluate treatment with letrozole in postmenopausal women with hormone receptor–positive breast cancer. To assess therapy persistence, defined as the time from therapy start to the end of the therapy (TTEOT), two pre-specified study visits took place after 6 and 12 months. Competing risk survival analyses were performed to identify patient and tumor characteristics that predict TTEOT. Results: Out of 200 patients, 66 patients terminated treatment prematurely, 26 (13%) of them due to causes other than disease progression. Persistence rate for reasons other than progression at 12 months was 77.7%. Persistence was lower in patients who reported any adverse event (AE) in the first 30 days of ET (89.5% with no AE and 56% with AE). Furthermore, patients had a lower persistence if they reported compliance problems in the past before letrozole treatment. Conclusions: Despite suffering from a life-threatening disease, AEs of an AI will result in a relevant number of treatment terminations that are not related to progression. Some subgroups of patients have very low persistence rates. Especially with regard to novel endocrine combination therapies, these data imply that some groups of patients will need special attention to guide them through the therapy process. Trial registration Clinical Trials Number: CFEM345DDE1

    Magen

    No full text

    Quantitative Measurement of cAMP Concentration Using an Exchange Protein Directly Activated by a cAMP-Based FRET-Sensor

    Get PDF
    Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an “exchange protein directly activated by cAMP”. In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as ΔE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 ÎŒM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7)

    Palmitoylation of the 5-hydroxytryptamine4a receptor regulates receptor phosphorylation, desensitization, and beta-arrestin-mediated endocytosis.

    No full text
    The mouse 5-hydroxytryptamine4a (5-HT4a) receptor is an unusual member of the G protein-coupled receptor superfamily because it possesses two separate carboxyl-terminal palmitoylation sites, which may allow the receptor to adopt different conformations in an agonist-dependent manner (J Biol Chem 277:2534-2546, 2002). By targeted mutation of the proximal (Cys-328/329) or distal (Cys-386) palmitoylation sites, or a combination of both, we generated 5-HT4a receptor variants with distinct functional characteristics. In this study, we showed that upon 5-HT stimulation, the 5-HT4a receptor undergoes rapid (t(1/2) approximately 2 min) and dose-dependent (EC50 approximately 180 nM) phosphorylation on serine residues by a staurosporine-insensitive receptor kinase. Overexpression of GRK2 significantly reduced the receptor-promoted cAMP formation. The Cys328/329-Ser mutant, which is constitutively active in the absence of ligand, exhibited enhanced receptor phosphorylation under both basal and agonist-stimulated conditions and was more effectively desensitized and internalized via a beta-arrestin-2 mediated pathway compared with the wild-type 5-HT4a. In contrast, G protein activation, phosphorylation, desensitization, and internalization of the other palmitoylation-deficient receptor mutants were affected differently. These findings suggest that palmitoylation plays an important role in modulating 5-HT4a receptor functions and that G protein activation, phosphorylation, desensitization, and internalization depend on the different receptor conformations
    corecore