10,514 research outputs found

    Semiclassical Approach to Orbital Magnetism of Interacting Diffusive Quantum Systems

    Full text link
    We study interaction effects on the orbital magnetism of diffusive mesoscopic quantum systems. By combining many-body perturbation theory with semiclassical techniques, we show that the interaction contribution to the ensemble averaged quantum thermodynamic potential can be reduced to an essentially classical operator. We compute the magnetic response of disordered rings and dots for diffusive classical dynamics. Our semiclassical approach reproduces the results of previous diagrammatic quantum calculations.Comment: 8 pages, revtex, includes 1 postscript fi

    Sampling functions for multimode homodyne tomography with a single local oscillator

    Full text link
    We derive various sampling functions for multimode homodyne tomography with a single local oscillator. These functions allow us to sample multimode s-parametrized quasidistributions, density matrix elements in Fock basis, and s-ordered moments of arbitrary order directly from the measured quadrature statistics. The inevitable experimental losses can be compensated by proper modification of the sampling functions. Results of Monte Carlo simulations for squeezed three-mode state are reported and the feasibility of reconstruction of the three-mode Q-function and s-ordered moments from 10^7 sampled data is demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.

    Chaos and Interacting Electrons in Ballistic Quantum Dots

    Full text link
    We show that the classical dynamics of independent particles can determine the quantum properties of interacting electrons in the ballistic regime. This connection is established using diagrammatic perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital magnetism is greatly enhanced over the Landau susceptibility by the combined effects of interactions and finite size. The presence of families of periodic orbits in regular systems makes their susceptibility parametrically larger than that of chaotic systems, a difference which emerges from correlation terms.Comment: 4 pages, revtex, includes 3 postscript fig

    N-glycans of human amniotic fluid transferrin stimulate progesterone production in human first trimester trophoblast cells in vitro

    Get PDF
    Aims: During pregnancy, the placenta produces a variety of steroid hormones and proteins. Several of these substances have been shown to exert immunomodulatory effects. Progesterone is thought to mediate some of these effects by regulating uterine responsiveness. The aim of this study was to clarify the effect of amniotic fluid transferrin and its N-glycans on the release of progesterone by first trimester trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human first trimester placentae by trypsin-DNAse dispersion of villous tissue followed by a percoll gradient centrifugation and depletion of CD45 positive cells by magnetic cell sorting. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of transferrin from human amniotic fluid and serum as well as with N-glycans obtained from amniotic fluid transferrin. Culture supernatants were assayed for progesterone by enzyme-immunometric methods. Results: The release of progesterone increased in amniotic fluid transferrin- and N-glycan-treated trophoblast cell cultures compared to untreated trophoblast cells. There was no stimulating effect of serum transferrin on the progesterone production of trophoblast cells. Conclusions: The results suggest that amnion-transferrin and especially its N-glycans modulate the endocrine function of trophoblasts in culture by up regulating progesterone secretion

    Interfaces Within Graphene Nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes to conclusion

    Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables

    Full text link
    During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-the-art image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest.Comment: 6 pages, 11 figures, presented at EUCAS 201

    beta-Cu2V2O7: a spin-1/2 honeycomb lattice system

    Full text link
    We report on band structure calculations and a microscopic model of the low-dimensional magnet beta-Cu2V2O7. Magnetic properties of this compound can be described by a spin-1/2 anisotropic honeycomb lattice model with the averaged coupling \bar J1=60-66 K. The low symmetry of the crystal structure leads to two inequivalent couplings J1 and J1', but this weak spatial anisotropy does not affect the essential physics of the honeycomb spin lattice. The structural realization of the honeycomb lattice is highly non-trivial: the leading interactions J1 and J1' run via double bridges of VO4 tetrahedra between spatially separated Cu atoms, while the interactions between structural nearest neighbors are negligible. The non-negligible inter-plane coupling Jperp~15 K gives rise to the long-range magnetic ordering at TN~26 K. Our model simulations improve the fit of the magnetic susceptibility data, compared to the previously assumed spin-chain models. Additionally, the simulated ordering temperature of 27 K is in remarkable agreement with the experiment. Our study evaluates beta-Cu2V2O7 as the best available experimental realization of the spin-1/2 Heisenberg model on the honeycomb lattice. We also provide an instructive comparison of different band structure codes and computational approaches to the evaluation of exchange couplings in magnetic insulators.Comment: 11 pages, 10 figures, 2 tables: revised version, extended description of simulation result

    Symmetry Classes in Graphene Quantum Dots: Universal Spectral Statistics, Weak Localization, and Conductance Fluctuations

    Get PDF
    We study the symmetry classes of graphene quantum dots, both open and closed, through the conductance and energy level statistics. For abrupt termination of the lattice, these properties are well described by the standard orthogonal and unitary ensembles. However, for smooth mass confinement, special time-reversal symmetries associated with the sublattice and valley degrees of freedom are critical: they lead to block diagonal Hamiltonians and scattering matrices with blocks belonging to the unitary symmetry class even at zero magnetic field. While the effect of this structure is clearly seen in the conductance of open dots, it is suppressed in the spectral statistics of closed dots, because the intervalley scattering time is shorter than the time required to resolve a level spacing in the closed systems but longer than the escape time of the open systems.Comment: 4 pages, 4 figures, RevTex, submitted to Phys. Rev. Let

    Tunable Fano Resonances in Transport through Microwave Billiards

    Full text link
    We present a tunable microwave scattering device that allows the controlled variation of Fano line shape parameters in transmission through quantum billiards. Transport in this device is nearly fully coherent. By comparison with quantum calculations, employing the modular recursive Green's-function method, the scattering wave function and the degree of residual decoherence can be determined. The parametric variation of Fano line shapes in terms of interacting resonances is analyzed.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore