16 research outputs found

    The Interplay of Reovirus with Autophagy

    Get PDF
    Autophagy participates in multiple fundamental physiological processes, including survival, differentiation, development, and cellular homeostasis. It eliminates cytoplasmic protein aggregates and damaged organelles by triggering a series of events: sequestering the protein substrates into double-membrane vesicles, fusing the vesicles with lysosomes, and then degrading the autophagic contents. This degradation pathway is also involved in various disorders, for instance, cancers and infectious diseases. This paper provides an overview of modulation of autophagy in the course of reovirus infection and also the interplay of autophagy and reovirus

    A metabolome and transcriptome survey to tap the dynamics of fruit prolonged shelf-life and improved quality within Greek tomato germplasm

    Full text link
    [EN] Introduction: Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored. Methods: Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits. Results: The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential.The authors declare financial support was received for the research, authorship, and/or publication of this article. AKK acknowledges the support by European Commission H2020 research and innovation program through TRADITOM project agreement No. 634561 and the co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH CREATE INNOVATE (project code: T2EDK-01332-n-Tomatomics). For networking activities, support is acknowledged by COST Action CA18210-RoxyCost, supported by COST (European Cooperation in Science and Technology). GD acknowledges support by the PRIMA program through PROMEDLIFE project agreement No. 2132. JR acknowledges funding by the Spanish Ministry of Science and Innovation grant (IJC2020-045612-I). AG acknowledges the support of Horizon EU program through contract 101000716.Mellidou, I.; Koukounaras, A.; Frusciante, S.; Rambla Nebot, JL.; Patelou, E.; Ntoanidou, S.; Pons Puig, C.... (2023). A metabolome and transcriptome survey to tap the dynamics of fruit prolonged shelf-life and improved quality within Greek tomato germplasm. Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.12673401

    Aspergillus sclerotiorum fungus is lethal to both Western drywood (Incisitermes minor) and Western subterranean (Reticulitermes hesperus) termites.

    No full text
    Termite control costs $1.5 billion per year in the United States alone, and methods for termite control usually consist of chemical pesticides. However, these methods have their drawbacks, which include the development of resistance, environmental pollution, and toxicity to other organisms. Biological termite control, which employs the use of living organisms to combat pests, offers an alternative to chemical pesticides. This study highlights the discovery of a fungus, termed “APU strain,” that was hypothesized to be pathogenic to termites. Phylogenetic and morphological analysis showed that the fungus is a strain of Aspergillus sclerotiorum, and experiments showed that both western drywood (Incisitermes minor) and western subterranean (Reticulitermes hesperus) termites die in a dose-dependent manner exposed to fungal spores of A. sclerotiorum APU strain. In addition, exposure to the A. sclerotiorum Huber strain elicited death in a similar manner as the APU strain. The mechanism by which the fungus caused termite death is still unknown and warrants further investigation. While these results support that A. sclerotiorum is a termite pathogen, further studies are needed to determine whether the fungal species has potential as a biological control agent

    Entry of Herpes Simplex Virus Type 1 into Primary Sensory Neurons In Vitro Is Mediated by Nectin-1/HveC

    No full text
    Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons

    A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts

    Full text link
    [EN] Carotenoids possess important biological functions that make them essential components of the human diet. 8-Carotene and some other carotenoids have vitamin A activity while lutein and zeaxanthin, typically referred to as the macular pigments, are involved in good vision and in delaying the onset of age-related eye diseases. In order to create a zeaxanthin-producing tomato fruit, two transgenic lines, one with a high 8-carotene cyclase activity and the other with a high 8-carotene hydroxylase activity, have been genetically crossed. Ripe fruits from the resulting progeny contained significant levels of violaxanthin, antheraxanthin, and xanthophyll esters. However, their zeaxanthin content was not as high as expected, and the total level of carotenoids was only 25% of the carotenoids found in ripe fruits of the comparator line. Targeted transcript analysis and apocarotenoids determinations indicated that transcriptional regulation of the pathway or degradation of synthesized carotenoids were not responsible for the low carotenoid content of hybrid fruits which instead appeared to result from a substantial reduction of carotenoid biosynthesis. Notably, the content of an unidentified hydroxylated cyclic (C13) apocarotenoid was 13 times higher in the hybrid fruits than in the control fruits. Furthermore, a GC-MSbased metabolite profiling demonstrated a perturbation of carotenogenesis in ripening hybrid fruits compatible with a block of the pathway. Moreover, carotenoid profiling on leaf, fruit, and petal samples from a set of experimental lines carrying the hp3 mutation, in combination with the two transgenes, indicated that the carotenoid biosynthesis in petal and fruit chromoplasts could be regulated. Altogether the data were consistent with the hypothesis of the regulation of the carotenoid pathway in tomato chromoplasts through a mechanism of feedback inhibition mediated by a xanthophyll-derived apocarotenoid. This chromoplast-specific post-transcriptional mechanism was disclosed in transgenic fruits of HU hybrid owing to the abnormal production of zeaxanthin and antheraxanthin, the more probable precursors of the apocarotenoid signal. A model describing the regulation of carotenoid pathway in tomato chromoplasts is presented.The authors apologize for the inadvertent omission of any pertinent reference in this manuscript. This work was supported in part through the European Union Framework Program FP7 METAPRO Project 244348 and benefit by the activities of the European COST actions CA15136 (EUROCAROTEN) and CA18210 (ROXY) . We are indebted to Prof. Dani Zamir of Hebrew University of Jerusalem for providing us with a seed sample of tomato line e1827m1. JLR acknowledges financiation by the Spanish Ministry of Economy and Competitiveness through a "Juan de la Cierva-Incorporacion" grant (IJC2020-045612-I) . CDA, ALS, and GG would like to thank all Colleagues at the Metapontum Agrobios Research Center of ALSIA (Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura, Matera, Italy) who collaborated or provided help throughout this study.D'ambrosio, C.; Stigliani, AL.; Rambla Nebot, JL.; Frusciante, S.; Diretto, G.; Enfissi, EM.; Granell Richart, A.... (2023). A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts. Plant Science (Online). 328:1-14. https://doi.org/10.1016/j.plantsci.2022.11157511432

    Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection

    No full text
    Curcumin (Cur), a polyphenolic compound extracted from spice and common food colourant turmeric, contains versatile bio-activities. Monoacetylcurcumin (MAC), a structural analogue of Cur, differs from Cur by acetyl modification, but retains enone groups. Comparative analysis revealed MAC effectively inhibited influenza virus infection (IAV) to a similar extent as, if not superior to, curcumin. Both compounds mildly reduced viral NA activity. Surprisingly, unlike Cur, the MAC inhibition of IAV did not occur through the blocking of HA activity. However, MAC strongly dampened Akt phosphorylation, the prerequisite signalling for efficient IAV propagation. A much stronger inhibition effect on IAV infection was observed when MAC treatment was in combination with Cur. Collectively, MAC demonstrated clear antiviral activity, and likely inhibited IAV via multiple mechanisms that were not identical to Cur. Importantly, Cur and MAC in combination synergistically inhibited IAV infection. Keywords: Curcumin, Influenza virus, Antiviral, Haemagglutinin, Synergi

    Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection

    No full text
    Curcumin (Cur), a polyphenolic compound extracted from spice and common food colourant turmeric, contains versatile bio-activities. Monoacetylcurcumin (MAC), a structural analogue of Cur, differs from Cur by acetyl modification, but retains enone groups. Comparative analysis revealed MAC effectively inhibited influenza virus infection (IAV) to a similar extent as, if not superior to, curcumin. Both compounds mildly reduced viral NA activity. Surprisingly, unlike Cur, the MAC inhibition of IAV did not occur through the blocking of HA activity. However, MAC strongly dampened Akt phosphorylation, the prerequisite signalling for efficient IAV propagation. A much stronger inhibition effect on IAV infection was observed when MAC treatment was in combination with Cur. Collectively, MAC demonstrated clear antiviral activity, and likely inhibited IAV via multiple mechanisms that were not identical to Cur. Importantly, Cur and MAC in combination synergistically inhibited IAV infection
    corecore