5,366 research outputs found
Chlamydia trachomatis infection and the risk of perinatal mortality in Hungary
Introduction: Chlamydial infections of the genital tract are thought to often lead to preterm birth, which is the most important perinatal problem in Hungary.
Aim of study: A multicenter study was carried out to determine the prevalence of Chlamydia trachomatis infection, risk factors for the infection and to relate the infection to perinatal mortality, accounting for potential confounding effects.
Methods: The nucleic acid hybridization method (PACE2 Gen-Probe) was applied for the examination of Chlamydia trachomatis. Logistic regression analysis was used to assess risk.
Results: A total of 6156 pregnant women were examined for the occurrence of Chlamydia trachomatis. The observed overall rate of chlamydial infection was 5.9%. Young age (less than 24 years old) (OR and 95% CI:1.6 (1.3-2.0)), unmarried status (1.5 (1.2-1.9)) and the high unemployment rate (2.1 (1.6-2.7)) were statistically significant predictors of the infection.
In logistic regression analysis, chlamydial infection (1.9 (1.1-3.3)). high unemployment rate (1.5 (1.2-2.2)) and low birth weight (1.7 (1.1-2.7) were significant predictors of perinatal mortality.
Conclusions: Testing pregnant women for diseases that can be transmitted perinatally is an important part of obstetric cart. Screening for C. trachomatis of unmarried women under 24 years of age is suggested and need increased observation during labor
Political cultures in British trade unionism and their dissemination : 1931–1951
This study is an Arts and Humanities Research Council funded collaborative project between Salford University and the Working Class Movement Library (WCML). The project seeks to investigate and analyse, both diachronically and synchronically, the political cultures within major British trade unions affiliated to the Labour Party, the way in which these relate to the ideologies of working-class political movements generally, and how they are situated within wider contemporaneous debates. Typically research into trade unions has focused on the industrial side of their work, their official doctrine, and their formal and explicit policies, as expressed through conference speeches, resolutions and voting behaviour. In contrast this study focuses on the morphology of the ideology and ethos of the different unions and their membership, looking beneath the official policies and overt statements to ascertain their common-sense understandings and unconscious and unquestioned received wisdom, which may have been invisible to the participants, but is exposed with the passage of time. The relationship between the ideological understandings expressed through the journals, the dominant strands of socialist thought, and Labour Party policy, will also be investigated. The key sources for the project are in-house journals (1931-1951), written by and for trade unionists affiliated to the Labour Party, which are held at the WCML. The Amalgamated Engineering Union (AEU) and the National Union of General and Municipal Workers (NUGMW) have been selected for scrutiny: the NUGMW, a general union in which ‘labourism’ dominated, and the AEU, a traditional craft union renowned for its centrist leadership and powerful communist influenced, shop steward movement. The journal of the Aircraft Shop Stewards’ National Council (ASSNC), the New Propellor, is also included, not as a co-equivalent to the official union journals, but as a representative benchmark of the ideological understandings of many engineering activists, who agitated and promoted left-wing socialist and communist interpretations
Structure of the Hexadecane Rotator Phase: Combination of X-ray Spectra and Molecular Dynamics Simulation.
Rotator phases are rotationally disordered plastic crystals, some of which can form upon freezing of alkane at alkane-water interfaces. Existing X-ray diffraction studies show only partial unit cell information for rotator phases of some alkanes. This includes the rotator phase of n-hexadecane, which is a transient metastable phase in pure alkane systems, but shows remarkable stability at interfaces when mediated by a surfactant. Here, we combine synchrotron X-ray diffraction data and molecular dynamics (MD) simulations, reporting clear evidence of the face-centered orthorhombic RI rotator phase from spectra for two hexadecane emulsions, one stabilized by Brij C10 and another by Tween 40 surfactants. MD simulations of pure hexadecane use the recently developed Williams 7B force field, which is capable of reproducing crystal-to-rotator phase transitions, and it also predicts the crystal structure of the RI phase. Full unit cell information is obtained by combining unit cell dimensions from synchrotron data and molecular orientations from MD simulations. A unit cell model of the RI phase is produced in the crystallographic information file (CIF) format, with each molecule represented by a superposition of four rotational positions, each with 25% occupancy. Powder diffraction spectra computed using this model are in good agreement with the experimental spectra
Emergence of structure in mouse embryos: Structural Entropy morphometry applied to digital models of embryonic anatomy
We apply an information-theoretic measure to anatomical models of the Edinburgh Mouse Atlas Project. Our goal is to quantify the anatomical complexity of the embryo and to understand how this quantity changes as the organism develops through time. Our measure, Structural Entropy, takes into account the geometrical character of the intermingling of tissue types in the embryo. It does this by a mathematical process that effectively imagines a point-like explorer that starts at an arbitrary place in the 3D structure of the embryo and takes a random path through the embryo, recording the sequence of tissues through which it passes. Consideration of a large number of such paths yields a probability distribution of paths making connections between specific tissue types, and Structural Entropy is calculated from this (mathematical details are given in the main text). We find that Structural Entropy generally decreases (order increases) almost linearly throughout developmental time (4–18 days). There is one `blip’ of increased Structural Entropy across days 7–8: this corresponds to gastrulation. Our results highlight the potential for mathematical techniques to provide insight into the development of anatomical structure, and also the need for further sources of accurate 3D anatomical data to support analyses of this kind
A Novel Wayfinding Service for Empowering Physical Activity
A wayfinding service for empowering physical activity is presented. The service finds routes that involve multi-modal transportation where walking is always one mode. The service is based on the new concept of multi-modal transportation with multi-criteria walking. A prototype of the service is developed and a new empowerment approach for it is discussed
Amygdala DCX and blood Cdk14 are implicated as cross-species indicators of individual differences in fear, extinction, and resilience to trauma exposure
Doublecortin (DCX) has long been implicated in, and employed as a marker for, neurogenesis, yet little is known about its function in non-neurogenic brain regions, including the amygdala. This study sought first to explore, in rodents, whether fear learning and extinction modulate amygdala DCX expression and, second, to assess the utility of peripheral DCX correlates as predictive biomarkers of trauma response in rodents and humans. Pavlovian conditioning was found to alter DCX protein levels in mice 24 h later, resulting in higher DCX expression associated with enhanced learning in paradigms examining both the acquisition and extinction of fear (p < 0.001). This, in turn, is associated with differences in freezing on subsequent fear expression tests, and the same relationship between DCX and fear extinction was replicated in rats (p < 0.001), with higher amygdala DCX levels associated with more rapid extinction of fear. RNAseq of amygdala and blood from mice identified 388 amygdala genes that correlated with DCX (q < 0.001) and which gene ontology analyses revealed were significantly over-represented for neurodevelopmental processes. In blood, DCX-correlated genes included the Wnt signaling molecule Cdk14 which was found to predict freezing during both fear acquisition (p < 0.05) and brief extinction protocols (p < 0.001). High Cdk14 measured in blood immediately after testing was also associated with less freezing during fear expression testing (p < 0.01). Finally, in humans, Cdk14 expression in blood taken shortly after trauma was found to predict resilience in males for up to a year post-trauma (p < 0.0001). These data implicate amygdala DCX in fear learning and suggest that Cdk14 may serve as a predictive biomarker of trauma response
Viscous placebo and carbohydrate breakfasts similarly decrease appetite and increase resistance exercise performance compared to a control breakfast in trained males
Given the common view that pre-exercise nutrition/breakfast is important for performance, the present study investigated whether breakfast influences resistance exercise performance via a physiological or psychological effect. Twenty-two resistance trained, breakfast-consuming men completed three experimental trials, consuming water-only (WAT), or semi-solid breakfasts containing 0 g/kg (PLA) or 1.5 g/kg (CHO) maltodextrin. PLA and CHO meals contained xanthan gum and low-energy flavouring (~29 kcal) and subjects were told both ‘contained energy’. Two hours post-meal, subjects completed 4 sets of back squat and bench press to failure at 90% 10 repetition maximum. Blood samples were taken pre-meal, 45 min and 105 min post-meal to measure serum/plasma glucose, insulin, ghrelin, GLP-1 and PYY concentrations. Subjective hunger/fullness were also measured. Total back squat repetitions were greater in CHO (44 (SD 10) repetitions) and PLA (43 ± 10 repetitions) than WAT (38 (SD 10) repetitions; P < 0.001). Total bench press repetitions were similar between trials (WAT 37 (SD 7) repetitions; CHO 39 ± 7 repetitions; PLA 38 (SD 7) repetitions; P = 0.130). Performance was similar between CHO and PLA trials. Hunger was suppressed and fullness increased similarly in PLA and CHO, relative to WAT (P < 0.001). During CHO, plasma glucose was elevated at 45 min (P < 0.05), whilst serum insulin was elevated (P < 0.05) and plasma ghrelin supressed at 45 and 105 min (P < 0.05). These results suggest that breakfast/pre-exercise nutrition enhances resistance exercise performance via a psychological effect, although a potential mediating role of hunger cannot be discounted
Exploring the dynamics of flagellar dynein within the axoneme with Fluctuating Finite Element Analysis
Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme. We subsequently assess the influence of crowding on the 3D exploration of microtubule-binding sites, and specifically on the axial step length. Our calculations combine experimental information on the shape, flexibility and environment of dynein-c from three distinct sources; negative stain electron microscopy, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). Our FFEA simulations show that the super-macromolecular organisation of multiple protein complexes into higher-order structures can have a significant influence on the effective flexibility of the individual molecular components, and may, therefore, play an important role in the physical mechanisms underlying their biological function
- …