621 research outputs found

    Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments

    Full text link
    A large number of treatments of the meson spectrum have been tried that consider mesons as quark - anti quark bound states. Recently, we used relativistic quantum "constraint" mechanics to introduce a fully covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure functions as a "quantum mechanical transform of Bethe-Salpeter equation". Here, we test its spectral fits against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and the popular semi-relativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and does so with the smallest number of interaction functions without additional cutoff parameters necessary to make other approaches numerically tractable. We discuss the distinguishing features of our model that may account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings that are crucial for its success when solved nonperturbatively for the analogous two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content

    The importance of individual variation for the interpretation of behavioural studies: ethanol effects vary with basal activity level in zebrafish larvae

    Get PDF
    Standardization and reduction of variation is key to behavioural screening of animal models in toxicological and pharmacological studies. However, individual variation in behavioural and physiological phenotypes remains in each laboratory population and can undermine the understanding of toxicological and pharmaceutical effects and their underlying mechanisms. Here, we used zebrafish (ABTL-strain) larvae to explore individual consistency in activity level and emergence time, across subsequent days of early development (6-8 dpf). We also explored the correlation between these two behavioural parameters. We found inter-individual consistency over time in activity level and emergence time, but we did not find a consistent correlation between these parameters. Subsequently, we investigated the impact of variation in activity level on the effect of a 1% ethanol treatment, suitable for our proof-of-concept case study about whether impact from pharmacological treatments might be affected by inter-individual variation in basal locomotion. The inter-individual consistency over time in activity level did not persist in this test. This was due to the velocity change from before to after exposure, which turned out to be a dynamic individual trait related to basal activity level: low-activity individuals raised their swimming velocity, while high-activity individuals slowed down, yielding diametrically opposite response patterns to ethanol exposure. We therefore argue that inter-individual consistency in basal activity level, already from 6 dpf, is an important factor to take into account and provides a practical measure to improve the power of statistical analyses and the scope for data interpretation from behavioural screening studies.Animal science

    Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys

    Full text link
    For a wide class of technologically relevant compound III-V and II-VI semiconductor materials AC and BC mixed crystals (alloys) of the type A(x)B(1-x)C can be realized. As the electronic properties like the bulk band gap vary continuously with x, any band gap in between that of the pure AC and BC systems can be obtained by choosing the appropriate concentration x, granted that the respective ratio is miscible and thermodynamically stable. In most cases the band gap does not vary linearly with x, but a pronounced bowing behavior as a function of the concentration is observed. In this paper we show that the electronic properties of such A(x)B(1-x)C semiconductors and, in particular, the band gap bowing can well be described and understood starting from empirical tight binding models for the pure AC and BC systems. The electronic properties of the A(x)B(1-x)C system can be described by choosing the tight-binding parameters of the AC or BC system with probabilities x and 1-x, respectively. We demonstrate this by exact diagonalization of finite but large supercells and by means of calculations within the established coherent potential approximation (CPA). We apply this treatment to the II-VI system Cd(x)Zn(1-x)Se, to the III-V system In(x)Ga(1-x)As and to the III-nitride system Ga(x)Al(1-x)N.Comment: 14 pages, 10 figure

    The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture

    Full text link
    We present a simple parameterization of a running coupling constant, defined via the static potential, that interpolates between 2-loop QCD in the UV and the string prediction in the IR. Besides the usual \Lam-parameter and the string tension, the coupling depends on one dimensionless parameter, determining how fast the crossover from UV to IR behavior occurs (in principle we know how to take into account any number of loops by adding more parameters). Using a new Ansatz for the LATTICE potential in terms of the continuum coupling, we can fit quenched and unquenched Monte Carlo results for the potential down to ONE lattice spacing, and at the same time extract the running coupling to high precision. We compare our Ansatz with 1-loop results for the lattice potential, and use the coupling from our fits to quantitatively check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie estimate of the coupling extracted from the plaquette, and determine Sommer's scale r0r_0 much more accurately than previously possible. For pure SU(3) we find that the coupling scales on the percent level for β6\beta\geq 6.Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs. uncorrelated fits in sect. 4; corrected misprints; updated references.

    Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    Full text link
    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    The Business Model: Recent Developments and Future Research

    Get PDF
    This article provides a broad and multifaceted review of the received literature on business models in which the authors examine the business model concept through multiple subject-matter lenses. The review reveals that scholars do not agree on what a business model is and that the literature is developing largely in silos, according to the phenomena of interest of the respective researchers. However, the authors also found emerging common themes among scholars of business models. Specifically, (1) the business model is emerging as a new unit of analysis; (2) business models emphasize a system-level, holistic approach to explaining how firms “do business”; (3) firm activities play an important role in the various conceptualizations of business models that have been proposed; and (4) business models seek to explain how value is created, not just how it is captured. These emerging themes could serve as catalysts for a more unified study of business models

    The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    Get PDF
    The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age
    corecore