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Using Geometry to Evaluate Strategic Road Proposals in 
Orbital-Radial Cities 
 
Abstract 
 
This paper uses geometry to evaluate major road proposals in cities with road networks consisting of 
orbital and radial routes. The type of geometry used is a development of the Karlsruhe or Moscow 
metric after the cities where it was identified, although the results have wider applicability. The paper 
begins with a detailed consideration of the relationship between route speeds, junction access and 
service areas. New urban patterns are presented using optimal space filling techniques in which the aim 
is to maximise drive-time coverage with the minimum number of junctions. The method is then refined 
to allow for effects such as congestion and interstitial access. The results are then used in a case study 
to evaluate a well-known strategic road plan for London first proposed in the 1940s. There follows a 
general discussion about the policy and planning implications for London and further possible 
developments of the techniques presented. 
  
Introduction 
 
Many cities are based on road networks that radiate outward from the city 
centre. A large number among them have orbital roads which deflect 
through traffic away from the centre but also permit local traffic to access 
suburbs more efficiently (Tripp, 1942). The number of orbital rings in 
each city varies, but two or more are not uncommon. Ring roads create 
conditions in which certain services find it advantageous to locate on or 
near them, especially ones that provide fast and easy access in radial as 
well as orbital directions. More generally a well-designed transport 
network confers benefits by improving equity and access, and also the 
environment.  
 
This paper is concerned with an evaluation of road systems of this type, 
in particular those exemplified by the classic hub-spoke network. The 
efficiency and effectiveness of any road network is dependent on a 
number of factors including route capacity, junction spacing, congestion 
levels and so forth. Such factors are important in cities with densely 
populated urban cores, which are usually associated with higher 
congestion levels - considerations that are especially critical in the hub-
spoke case.  
 
The approach used is based on a geometric evaluation of the accessibility 
properties of such networks taking these factors into account. The role 
played by junctions is of particular interest as their position and spacing 
affects access levels by enabling changes of direction, in this case 
orthogonally. If they are spaced inefficiently then some areas will be less 
accessible whilst others will, in effect, be 'over-served'. The test of 
efficiency used is, in this sense, akin to concepts employed in space 
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partitioning studies where the aim to try to fill the urban plane so that no 
junction is further than a given travel time away. Road junctions thus play 
a similar pivotal role to, say emergency depots (fire and ambulance 
services) and so it is argued comparable approaches are appropriate. 
 
It is important to be clear why this is worth doing at all. Many road 
schemes are forced to adapt to changing traffic conditions, but frequently 
do so on a piecemeal basis. We choose a road scheme for London, 
initially published in 1944, namely Abercrombie's influential road plan 
for Greater London (Abercrombie, 1944), which broke this mould and 
which happens to be based a hub-spoke system. Whilst Abercrombie's 
plan was never completed it addresses problems that are just as relevant 
today, if not more so, and which remain central concerns of any future 
transport strategy for London. This includes the need to segregate long 
distance traffic from traffic of a purely local nature, to divert traffic from 
congested areas by one means or another, and to control parking. 
 
At the heart of Abercrombie's strategic vision is a set of principles for 
improving communications throughout the urban area to meet the need, 
for example  “….to reduce, as much as possible, time and money spent in 
diurnal travelling” and so produce an "enormous saving in transport 
costs" and to keep through traffic away from the centre. In addition, he 
wanted his plan to create suitable conditions for the decentralisation of 
population and employment so as to make way for the expected 
enormous growth in car usage in the post-war period. In this paper we use 
geometrical methods to revisit these objectives to determine the extent to 
which London today fulfils that vision, and to provide a test of the 
methods themselves.  
 
Following a re-cap of the literature, we develop the geometrical methods 
that are relevant to this kind of network using space-filling optimisation 
techniques. We then adapt the methodology to take into account the 
effects of fast routes and congestion before applying the results to 
Abercrombie's plan and London's network today. We conclude with some 
general policy implications and suggestions for taking the work forward. 
 
General issues arising 
 
There is a large geographical literature on efficient space-filling 
techniques, which are primarily designed for the optimisation of 
settlement patterns or the location of services. Our aim is to adapt them 
for evaluation transport networks but first we need to consider the 
problem in general terms. Regular hexagonal areas form the starting point 
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for most discussion of human settlement and service area patterns 
(Christaller, 1933) as they provide the most efficient way of covering a 
plane with the minimal number of locations. However, their application 
inside urban areas is restricted by transport factors such as congestion, 
street and route geometry. Mayhew & Hyman (1983) show how these can 
be overcome based on the methods of time surfaces and velocity fields.  
 
Mayhew and Hyman (2000) describe the effects on travel time and 
routing in cities with fast radial and orbital roads, so introducing another 
type of geometry. We know that in gridded North American cities 
movement is constrained to rectilinear steps. It is easily shown that this 
produces diamond-shaped service areas (for example, see Anjoumani, 
1981 and Richardson and Anjoumani, 1978). However, there has been no 
attempt to investigate equivalent patterns for orbital-radial cities. The first 
task is to consider the shape and size of service areas in these cases and 
how they mesh together optimally with no gaps or overlaps.  
 
Initially, it is assumed there is a dense, effectively continuous, fast radial 
network with a series of rings representing fast orbital roads at suitably 
spaced intervals. Direct travel is assumed to be possible but it regarded as 
unusual given the presence of these faster radial and orbital routes. 
Instead, users are considered to reach their destinations via a series of 
radial and orbital movements. A variant of this type of metric has been 
dubbed the Karlsruhe or Moscow metric (Klein, 1988; Okabe, Boots, 
Sugihara, 1992) after the cities initially associated with the phenomenon 
(see also Hyman and Mayhew, 2000, forthcoming).  This paper is a 
development of that metric using travel time rather than distance but it 
also introduces fast routes into the analysis. 
 
A service area is defined in terms of the locus of points that can be 
reached in a given time from a fixed location or facility, also defined as 
an isochrone. Initially, we use the term junction or facility 
interchangeably to define the activity at that location without any loss of 
generality. The general shape of a service area delineated by an arbitrary 
isochrone for a fixed position directly ‘on’ the orbital is shown in Figure 
1a for the orbital-radial case. A user located on the same radial as the 
facility reaches it without having to use the orbital road; similarly, an 
orbital-based user only uses the orbital. All other trips must be 
accomplished using a combination of radial and orbital legs.  
 
The pointed southern extension is scaled using travel time or speed, so 
that it just touches the city centre. If radial speeds were any faster or the 
time allowed any greater then a circular appendage would develop at the 



 

 

5 

5 

centre. Trips originating inside this circle would divert through the city 
centre because it provides a quicker alternative to the orbital. This effect 
is shown in Figure 1b.  In this case, the service area is the combination of 
two equal-value isochrones generated by two different routes, a double 
radial through the centre and the other via the orbital. This condition only 
arises when radial travel time through the centre is less than the value of 
the bounding isochrone. Since we are interested in cases that do not divert 
through the centre we do not consider this case further. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)                                       (b) 

 
Figure 1. Service area shape for a facility or junction located on an 
urban orbital:  (a) service area in which all trips involve use of the 
orbital. (b) service area in which some trips divert through the city centre 
as well as use the orbital. 
 
The bounding isochrones for individual service areas have the following 
general forms depending on whether the boundary lies inside or outside 
the orbital. For brevity, only the basic equations for service area 
boundaries in the clockwise direction are shown (0≤ θ ≤ π), in which due 
north is set to an angle of zero. The equivalent in the counter-clockwise 
direction is obtained by substituting 2π-θ for θ, or through simple 
symmetry. 
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Outside orbital (clockwise direction) 
 

 
where  r and r are the inside and outside boundary radii, R is the radius of 
the orbital, θ is the angle between the origin and the fixed location on the 
orbital, VR is the radial speed, k is the ratio of the radial speed to the 
orbital speed (defined as VR/VO) and t is travel time. It is noted that the 
derivatives of r with respect to θ are equal except for sign; that is: 

 
The orbital tip or apex of a service area makes an angle λ with the city 
centre given by, 
 

 
This result is used for evaluating the size of the service area by 
integrating the area inside the bounding isochrones and exploiting their 
symmetry. This yields the following integral equation, 
 

 
where A is the required area. As is shown in the annex, equation (5) 
eventually simplifies to: 

 
This result may be illustrated as follows. Suppose the radial and orbital 
velocities are 50k/h and 80 k/h respectively and the travel time is 0.25 
hours (15 minutes), then the service area is 500 km2. It is noted that the 
equation is independent of π as well as the orbital radius, a property 
which indirectly gives rise to the following limiting restriction. As is 
evident from Figure 1 the orbital tips must eventually wrap round and 
meet given a sufficiently large orbital speed or travel time, t.   Where 
there is overlap a heart-shaped area is formed inside the orbital, the tips 
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just touching when the origin to tip distance equals half the orbital 
circumference, or when 
 

 
Of considerable interest is a connection between the formula in equation 
(6) and its equivalent based on the Manhattan metric. As already noted 
above the diamond-shaped service areas produced by the Manhattan 
metric contain straight-line boundaries intersecting the road pattern and 
creating four identical triangles.  The distance from a fixed point to the 
tips of the diamond are Vxt and Vyt     where Vx and Vy are the speeds in the 
x and y directions. It follows that the total enclosed area must be: 
 

 
which is exactly the same as the result obtained for the orbital-radial case.  
Thus, service area size is independent of the movement geometry in these 
cases, a property that is exploited later. If the service population is 
continuously varying and a function of distance from the city centre then 
the population contained is found by multiplying r drdθ by D(r) the 
density function and integrating over the same limits. This is another 
useful property that can be employed, for example to evaluate the number 
of jobs or residences in a given travel time radius.  
 
Meshing together services areas 
 
We now address the problem of optimally meshing together the service 
areas using the minimum number without gaps or overlaps in order to  
complete the hub-spoke netwrok. We start by imagining two orbitals with 
the same number of junctions or facilities equally spaced around them but 
with the inner facilities ‘staggered’. Applying the bounding isochrone 
equations to the outer ring yields service areas having concave boundaries 
on the orbital interior and convex boundaries on the orbital exterior.  
 
The question is whether the exterior boundary of the interior ring ‘fits’ 
exactly into the interior boundaries of the exterior ring so as to form a 
non-overlapping pattern. The necessary gradient property follows directly 
from equation (3), strongly suggesting that with suitable scaling an exact 
‘fit’ might be possible. A more detailed comparison of the two equations 
shows that for this to occur the ratio of the speed on the inner orbital to its 
radius must equal the ratio of the speed on the outer orbital to its radius. 
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This means that speeds on outer rings need to be faster than speeds on 
inner rings - which clearly is not an unreasonable requirement if one 
examines actual orbital systems. This requirement also means that the 
time to circumnavigate the city is the same on either orbital. 
 
Figure 2 is based on a system with two equally spaced orbitals and three 
facilities per ring. Uniform radial speeds are assumed so that inter-ring 
travel times are identical. In this example the ring radii, numbers of 
required facilities per ring, and required service time provided the 
necessary starting conditions. The required speeds are initialised to ensure 
the tips of each service area just touch and their boundaries mesh. An 
alternative approach, not considered here, would be to make the speeds 
endogenous (ensuring they were proportional to the radii) and then to 
calculate the required number of facilities on each ring. The pattern 
obtained represents the most “efficient” arrangement from an 
accessibility standpoint and logically flows from the orbital-radial 
assumptions 

 
Figure 2. Nested service areas for seven facilities, three each located on 
the inner and outer ring and one at the centre (see text). The maximum 
travel time to any facility, 15 minutes, occurs at any point on a  service 
area boundary. The ratio of the speeds on the inner and outer orbital 
equals the ratio of their radii.  
 
With ring radii assumed to be 12.5kms and 25kms respectively and 
speeds of 52.35 k/h and 104.7 k/h on the orbitals and 50 k/h on the 
radials, the 15-minute service area on the outer ring is 654.4 km2 (2 x 
104.7 x 50 x 0.25 x 0.25) and on the inner ring 327.2 km2 (2 x 52.35 x 50 
x 0.25 x 0.25). Tip to tip distance is obtained by doubling the orbital 
velocity multiplied by the service time or alternatively dividing the 
circumference by three. Tip to tip distance on the radial axis is obtained 
by doubling the radial velocity multiplied by the service time. The time to 
circumnavigate either orbital is 1.5 hours. 
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It is noted that each service area follows the line of the bounding 
isochrones so that the maximum travel time applies the length of the 
boundary. This is in contrast to hexagonal patterns drawn in the uniform 
plane where bounding isochrones are circles of constant radius. Packing 
them efficiently means that the time standard applies only at the vertices 
of each hexagon. It will be noticed that there are three small 'uncovered' 
areas appearing as spokes in the interior of the inner orbital. These will 
always appear regardless of scaling. Travel time from these areas is 
slightly greater that the standard even if trips can divert through the city 
centre. The obvious solution is to add a seventh facility at the city centre 
itself.  
 
The extent of the unserved area may be evaluated using the following 
equation for a single spoke, where S is the required area. This is based on 
partial integration of the portions of service areas that fall inside the inner 
orbital and gives, 

 
Using earlier parameter values the spoke area is 54.56 km2 or three times 
this for the whole uncovered area, which in turn equates to 33.35% of the 
inner orbital area.  
 
It is evident that the number rings is potentially unlimited although in 
practice the required speeds quickly grow unrealistically high as the 
urban radius increases. Although it is tempting to draw parallels with 
hexagonal constructions, it is noted that overlaying a hexagonal 
tessellation of facilities would not result in a co-incidence of locations as 
the spacing rules differ. Figure 3 provides a series of examples based on 
six facilities per ring for a 15-minute travel time standard. The results are 
shown in table 1. The time to circumnavigate any orbital is now 3 hours, 
exactly twice the previous example. The area of a spoke is given by the 
following modified version of equation (9),  
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Example Ring radius 

(kms) 
Radial 
velocity VO 
(k/h) 

Orbital 
velocity VR 

(k/h) 

Service area 
km2 

A 12.5 50 26.18 163.59 
B 25 50 52.35 327.19 
C 37.5 50 78.53 490.78 
D 50 50 104.7 654.38 
E 62.5 50 130.88 817.97 

 
Table 1: Results for a large urban area with one to six rings and with six 
facilities per ring. Travel time radius is assumed to be 15 minutes. In the 
absence of a central facility the ‘uncovered’ area would be 163.69 km2 or 
33.35% of the interior of the inner orbital. The ratio of the ring radius to 
orbital speed is 0.48. Figure 3 refers. Ring speeds reach unsustainable 
levels on ring D and E. 
 
 
 

Figure 3: Optimal service area patterns for urban with one to five ring 
roads based on six facilities per ring. The area of a spoke is 27.27 km2. 

A B

C D

E
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Hierarchical service areas 
 
human settlement theory that in the uniform plane tiered hierarchies of 
service areas nest together, and that this property is used to explain why 
some settlements are bigger and offer more services than others. Our aim 
in this section is to establish the equivalent property for orbital-radial 
routing. Whilst not directly relevant to what follows it is suggestive of 
deeper properties about urban structures and transport infrastructure.  
 
Consider Figure 4a, a four-ring example as in Figure 3d but with a 30-
minute travel time standard so that the service area boundary is forced to 
penetrate adjacent orbitals. It is assumed that speeds on the first and third 
orbitals are no longer in proportion to their radius. The resultant 
composite service area now has three overlapping components, 
depending on which orbital route the user chooses to reach the facility. 
The union of the boundaries farthest from the facility denotes the outer 
service area boundary for that facility. Notice in particular how a higher 
assumed speed on ring three creates extensions that wrap farther round 
the ring.  
 
It means that some areas closer to ring two find it quicker to access the 
facility via ring three, even though it is farther out. In Figure 3b, orbital 
speeds proportional orbital radius are re-instated and, as a result, it is 
observed that the service areas based on each orbital route now nest 
together exactly. It turns out the total area so delineated is the same shape 
and size as the service area corresponding to the ring on which the facility 
is located, that is ring two. A formal proof of this property is 
straightforward.  
 
The significance of this result is that it allows us to overlay higher order 
centres onto the previous construction. In doing so the number of 
facilities in the second or higher tier covering wider areas must be a 
whole number which means that the number of facilities or junctions per 
ring in the first level must be at least divisible by two. Figure 5 shows a 
four-ring city with six facilities and three facilities per ring in levels one 
and two, the thickly drawn line denoting the boundary of the second tier 
facilities. 
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           (a)             (b) 
 
Figure 4: Service area boundary denoted by thickened line for a facility 
located on the second of four rings assuming a limiting time of 30 
minutes, double the time in Figure 3. In 4a the ring speeds are dis-
proportionate to the ring radii whereas in 4b they are assumed to be 
proportionate. Dotted lines indicate orbital roads. 

 
Figure 5: Two-level hierarchy with four rings and six facilities per ring in 
level one (small circular symbol). Three level two facilities are located on 
the second ring and one at the city centre (large circular symbol). Dotted 
lines indicate orbital roads. 
 
 
Similar considerations apply to higher level as well as to lower level 
service areas. The unserved area contains spokes that now stretch and 
touch the second ring. The size of the second tier service area is four 
times the size of the first tier at 1312.5 km2 using previous parameters. 
Clearly, the process of adding additional tiers is subject to simple rules 
about the number of facilities on each ring. A system with 16 facilities 
per ring would allow up to four tiers, whereas a system of 12 facilities 
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would allow only three and so on. These results therefore illustrate the 
potential for evaluating urban structures on a number of different levels, 
and the possibility for extending orbital radial geometry to address other 
issues. Our primary task here, however, is an evaluation of the transport 
properties of such networks, the subject to which we now return. 
 
Inclusion of fast radial routes and congestion effects 
 
Thus far we have assumed a continuum of radial routes as well as 
constant radial speeds. In order to evaluate Abercrombie's plan we need 
more explicit tools that focus on access times to major junctions and 
address the issue speed differences between inner and outer parts of the 
urban area. Lets us start with the first of our initial assumptions, namely a 
high density of radial routes. This is not as unreasonable as it seems; 
much depends on the city, the density of its road network and the distance 
from the centre.  
 
In this regard Hathaway's (1974) small but finely detailed study of 
isochrone patterns in London showed isochrones based on car travel to 
the centre to be a series of concentric circles as far out as 13kms. In other 
words, in central areas traffic speeds tend to be uniform regardless of 
class of road. However, as the urban radius increases interstitial gaps 
appear between fast radial and local routes creating speed differentials 
which gradually deform the shape of the isochrones. We endeavour to 
capture this effect in the following way. We do so by assuming interstitial 
speeds are a function of the local road network and are lower than on fast 
routes.  
 
Let the interstitial 'all-purpose network' speed be VA where VA<VR,VO . 
Assume users access nearest junctions on strategic sections of the 
network using either the nearest fast radial or orbital  - whichever 
minimises their journey time. They do so in two steps, either by a radial 
and then an arc movement or by an arc and then a radial movement.  
Depending on whether the journey origin is inside or outside the ring in 
question and to maximise the range of the service area at a given junction 
for a given travel time radius, the route that minimises or maximises r is 
selected.  Let kO and kR  be the ratio of the interstitial speed to the orbital 
speed and radial speed respectively. The bounding isochrone equations of 
service areas are as follows. 
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Inside orbital (clockwise direction) 

 
Where, 

 
and 

  
 
Outside orbital (clockwise direction) 
 

 
Where, 
 

 
and 

 
 
Figure 6 shows the effect of this modification on the basic service area 
shape for three examples. In 6a the interstitial speed is the same as the 
fast radial speed in which case we obtain the familiar result already seen 
in Figure 1. In 6b and 6c the interstitial speeds are reduced  (see caption), 
in which cases the junction service area implodes inwards. As might be 
expected intuitively it acquires two spikes on the radial axis, whereas the 
bounding isochrones on the orbital access reduce to a narrow channel 
either side of the orbital. Again, such effects have an analogy with the 
Manhattan metric in which the usual diamond shape converts into a four-
cornered star. 
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Figure 6: 27- minute service areas for fast orbital radial routes with 
reduced interstitial speeds on the all-purpose network.  Urban ring is 25 
kms with orbital and radial speeds of 100 k/h and 50 k/h. The interstitial 
speeds are (a) 50k/h (b) 30 k/h) and (c) 10 k/h. The service areas are (a) 
2205 km2 (b) 1156 km2  (c) 504 km2. 
 
Since the corners of the pointed or 'ragged' service areas in 6 b and c are 
positioned exactly as they are in 6a they can substitute for one another 
precisely. Of course, there are now gaps as the boundaries are no longer 
co-terminus as they were in our previous discussion on service areas. 
However, if those gaps are underdeveloped and sparsely populated the 
accessibility loss will be small. The equation used for determining the 
areas in Figure 6 b and c is based on an extension of the analogy in 
equation 6 with a rectilinear gridded city. It is, 
 

 
Where kR and kO are the ratios of the interstitial speed to the radial and 
orbital speeds respectively. As may be verified this equation reduces to 
equation (6) when the interstitial speed equals the radial speed (i.e. 
VA=VR). The formula is valuable for estimating the approximate 
population, household and jobs contained within a given travel time 
radius, although it should be applied with care and only to small areas 
particularly if local densities and speeds vary significantly. For example, 
suppose household density is 20 p/ha. Assuming the parameters in the 
caption to figure 6c this would imply there are around 1m households in a 
27-minute travel time radius around a given junction. We discuss this 
finding in an Abercrombie context below. 
 
Figures 7a and 7b scale these results up to the urban area. They show 
patterns based on a three-ring urban area, six junctions per ring and 12 
radials. The first, 7a, assumes interstitial speeds are the same throughout 
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the urban area whereas the second assumes lower interstitial speeds are 
only relevant beyond ring two. The effect is as before except the urban 
boundary now has a 'ragged' edge.  
  
 
 
 
 
 
 
 
 
 
 
  (a)      (b)  
 
Figure 7 Tessellated urban areas with 12 fast radials, 3 orbital roads and 
six facilities per ring (a) slow interstitial speeds everywhere (b) slow 
interstitial speeds beyond the second orbital. 
 
The second modification concerns our initial assumption that radial 
speeds are uniform. The problem, as is immediately evident in virtually 
all cities, is that traffic density exceeds road capacity near the city centre 
and so average speeds are significantly lower. It follows that the 
positioning of rings will need to be adjusted if inter-ring travel times are 
to be equalised and constant time standards between junctions are to be 
achieved. It is possible to consider almost any continuous function, or 
piece-wise combination of functions, relating speed to radius to address 
this problem. The most natural, and one which is often verified 
empirically (e.g. see Hyman and Mayhew, 2000) is to assume that radial 
speeds increase in proportion to distance from the city centre. However, it 
is clear that speeds cannot increase indefinitely and so it is further 
assumed these must level off at some point.  
 
Interstitial speeds need separate consideration. It is assumed they increase 
initially at the same rate as radial speeds in the central area where the 
road network is densest, in line with Hathaway's findings (Hathaway, 
1974). This is because, as previously noted, traffic tends to distribute 
itself so that speeds are fairly uniform regardless of road type.  Farther 
out, as gaps in radials appear it is assumed interstitial speeds level off; 
then, as local road networks themselves reduce in density, it is assumed 
interstitial speeds start to fall again. Such assumptions are flexible and do 
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not materially affect the evaluation although they do affect the final 
patterns obtained.  
 
To determine the equations of the bounding isochrones in the non-linear 
part of the urban region we proceed as before. Let the function describing 
radial speeds on the arterials be, 

 
Where ω is a constant of proportionality and R is the distance from the 
city centre. The inter-ring time between R1 and R2 is given by 

 
 
 
The associated isochrone equations bounding the service areas are given 
by, 
 
 
Inside boundary (clockwise direction) 
 

 
Outside boundary (clockwise direction) 

 
 Let interstitial speeds increase according  to 
 

 
 
The bounding isochrones are as follows: 
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Inside orbital (clockwise direction) 

 
Where 

 
and 

 
Outside orbital (clockwise direction) 
 

 
 
Where 

and 

Figure 8 shows the effect of this refinement on a previous illustration. As 
might be expected increased speeds cause the service area to stretch along 
the radials with increasing distance from the city centre. 
 
 
 
 
 
 
 
 
 
  (a)    (b)    (c) 

{ } )11(0)(),(min 21 Rrffr ≤≤= 

)23())((Re)(1 φ
θω −−= txpf 

)24())((Re)(2
OV

Rtxpf θφ −−=

)25())((Re)(1 φ
θω −= txpz 

)26())((Re)(2
OV

Rtxpz θφ −=

{ } )14()(),(max 21 Rrzzr ≥= 



 

 

19 

19 

Figure 8: 27-minute isochrones with increasing speed gradient from the 
city centre, where the ring radius is 12.5 kms, and orbital speed is 60km 
per hour. In (a) ω  is 3 and φ is 3, (b) 3 and 1.0 (c) 3 and 0.5. 
 
Application to London 
 
This completes the description of the geometric methodology and our 
attention now turns to the case study based on Abercrombie's plan for 
London. It is important to be clear on the objectives of the case study; 
there are four aspects: 
 
• To use the methodology to 'fit', as closely as possible, the theoretical 

ring-radial structure to the Abercrombie's plan and to note any 
important differences which might indicate weakness or gaps in the 
plan; 

  
• To compare the theoretical speeds that would be needed on each 

element of the network with those currently being achieved to see 
whether they are realistic or not and to consider the planning 
implications; 

 
• To check whether those speeds would have the effect of diverting 

through traffic away from the inner core, as Abercrombie had 
intended, and if not why; 

 
• To analyse the present distribution of population and employment to 

see the extent Abercrombie's plan would assist his goal of locating 
employment near people. 

 
Let us begin with a brief description of the plan itself. Abercrombie 
envisaged a giant cartwheel of 5 concentric orbital routes (A to E) and 10 
major routes, radiating outwards from the second ring, B (see Figure 9a).  
Junctions in the system would act, in effect, as gateways to different parts 
of London and also provide local access via minor roads, with new 
employment appearing in between (subject to land use zoning) which 
would have the effect of enabling local communities to become 
economically more self-sufficient.  
 
Abercrombie, basing his ideas on the County of London Plan (LCC, 
1943), drew a three-fold distinction between types of major road calling 
them “express arterials”, essentially motorways in today’s terminology, 
“arterials” and “sub- arterials.”  From the maps he provided proposed ring 
radii averaged about 2.8, 5.8, 12.5, 20 and 27 kms from the city centre, 
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the second and fourth of these being designated arterial and express 
arterial, and the others sub-arterial. Abercrombie is imprecise as to the 
kinds of speeds he expected on each class of road in his plan although his 
designation of roads into sub-arterial, arterials and express arterials 
supplies important clues about his intentions and assumptions. 
 
What Abercrombie meant by 'through traffic' is not entirely clear. For the 
purposes of this analysis, we assume it is a matter of determining, for 
each ring, whether it would be quicker for a user to use the nearest ring, 
one farther in or to divert through the centre.  Through or external traffic 
is defined for these purposes as traffic that originates and terminates 
outside the nearest ring to which it relates. If the quickest route cuts into 
that ring to access a closer ring then it is deemed to be counter to 
Abercrombie's aim.  
 
We arbitrarily choose ten minutes as the time standard for junction 
access. This is judgmental and the result of several iterations to find a set 
of speeds most closely resembling reality. Statistics on traffic speeds in 
London, although readily available, have only been collected since 1968. 
However, it is not particularly material which year one picks as change 
tends to take place very slowly. Data are based on measurements sampled 
from over 1,300 miles of roads inside the M25 orbital (DETR, 1998).  
 
Figures are available on peak, average and off-peak conditions on trunk 
(equivalent to arterial in Abercrombie's terminology) and other roads but 
not on individual routes except for the M25 orbital (equivalent to express 
arterial). They indicate that peak and off-peak speeds on the M25 and 
trunk roads are similar at 82k/h for off-peak and between 58k/h and 60 
k/h during the peak. On other roads in outer London the averages range 
between 27k/h and 37k/h.  No detail is available for the speed gradient in 
central London as only an average is given - which is effectively the same 
in peak and off-peak conditions at 16k/h.    
 
Figure 9a shows the key features of Abercrombie's plan in terms of the 
main rings and radials.  Fast radials connecting with the fourth ring are of 
express arterial standard, becoming sub-arterial as far as second ring 
where they terminate. It is noted that ring E does not connect up on the 
eastern side of the region and so cannot be considered a completed orbital 
for these purposes. A dotted line shows the route of today's M25 which, 
as is seen, is a hybrid of D and ring E.  
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Figure 9b and c show the tessellated urban area of London using the 
previously determined speed gradient and 10-minute access standard.  
There are 10 radials spaced at 36-degree intervals, the same number of 
radial routes indicated in the Abercrombie plan. The difference between 
9b and 9c is that there is no assumed differential interstitial speed in 9b 
whereas in 9c it is assumed there is - which is why one obtains the 
pronounced radial extensions. Table 2 gives the speeds and ring spacing, 
necessary to achieve the selected 10-minute time standard show in these 
diagrams. As is seen, there are several striking similarities between the 
model and the plan but also some differences.  We now consider each 
aspect in turn in relation to the original case study objectives. 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
               (a)                                        (b)                                            (c) 
Figure 9: (a) Abercrombie plan and today's M25 (b) tessellations with 
undifferentiated interstitial speeds (c) tessellations with differentiated 
interstitial speeds (based on a 10-minute travel time radius).  
 
Ring Intra-ring 

radial 
speed(k/h) 

Orbital 
speed(k/h) 

Interstitial 
Speeds(k/h) 

Model 
rings(kms) 

Abercrombie 
rings(kms) 

O VR=ωR  7 VA=ωR 1.85 n.a. 
A VR=ωR  12.9 VA=ωR  3.43 2.8 
B VR=ωR  24.2 VA=φR 6.41 5.8 
C 45 45.2 30 11.99 12.5 
D 45 73.1 20 19.4 20 
E 45 (70)= 101.8 15 27 27 
ω = 3.753  
φ  = 2.5     

Express arterial 
Arterial 
Sub-arterial 
M25 

E 

D 
C 

A B 
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Table 2.  Results showing actual and predicted rings, and assumed 
speeds. As radial and interstitial speeds are assumed to vary continuously 
in rings O, A, and B only the relevant formulae are shown with the 
parameters in a footnote. 
Ring-radial spacing 
 
As is seen from Table 2, the model replicates Abercrombie's ring spacing 
quite closely. One very important difference however, is that the model 
indicates a need for a sixth ring (designated O in the table) near the centre 
of the city of just over 1.85 km radius - that is a ring inside Abercrombie's 
innermost ring A.  As far as radials are concerned the actual average 
angle of separation in Abercrombie is 36 degrees, exactly the same as in 
the model (analysis shows there is no statistically significant difference 
between them). The main deviant radial is situated in the southeast sector 
where a maximum separation of 66 degrees is obtained. Examination of 
Abercrombie's plan shows this is caused primarily by a change of 
direction between ring C and D in the relevant radial. In fact 
Abercrombie's more detailed map allows for an existing sub-arterial route 
to fill the gap but he apparently thought it unnecessary to designate it 
arterial status.  
 
Orbital-radial speeds 
 
Table 2 shows the predicted orbital speeds needed to be achieved if 
Abercrombie's plan were to be implemented. They seem plausible when 
compared with current actual averages, although plainly the predicted 
speed deemed to be necessary on the outer ring (E) would be very 
stretching. It is clear Abercrombie regarded the outer ring as mainly 
recreational, so the comparison is somewhat unfair in this regard. 
However, ring C is more problematic. Whilst the required speed is 
realistic, its sub-arterial designation (see also below) would not support 
the concentrations of traffic experienced today. For ring B, designated 
'arterial' the opposite is the case - that is the road seems over designated 
for the speed deemed to be required.  
 
Predicted radial speeds implied in Abercrombie's plan are also generally 
reasonable. However, the speed predicted between rings C and E appears 
to be too low compared even with today's peak averages (45k/h compared 
with 58-60 k/h). This could suggest these rings are too close to one 
another although it could also mean the radials have been over-
designated. As for the central area itself, it is difficult to reconcile the 
finely differentiated speeds assumed inside ring C with published figures, 
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which are averaged over a wide area. This suggests a need for further 
study of this aspect using a more detailed speed profile. 
 
 
 
 
Through traffic 
 
Turning to through traffic, and Abercrombie's aim to divert it, predicted 
ring speeds indicate there would be no time advantage in using anything 
besides the first inward ring encountered. This is a simple consequence of 
the fact that it takes the same time to travel an angle of arc regardless of 
which orbital one uses. Hence, there is no time saving in using one farther 
in. Indeed, there would be at least a 20-minute time penalty resulting 
from travel on the extra radial legs.  
 
For journeys starting midway between two orbitals either orbital is 
theoretically possible but if the origin were nearer to the outer of the two 
orbitals then this route would be quicker. Because of the speed gradient 
applying on radials inside the first three rings there would be an added 
preference for the outer ring in this situation. These observations apply 
even on the innermost ring, since it would always be quicker to go round 
up to half a circumference than to pass through the city centre so keeping 
the most congested part of the city free of through traffic. We conclude 
therefore that Abercrombie's plan would meet this particular objective in 
full.   
 
Taking the first three of Abercrombie's objectives together we can say in 
summary that the main problems relate to the correct designations of 
rings. The results appear to indicate that B is over-designated and C is 
under-designated from the point of view of capacity; secondly that the 
spacing between rings D and E appears to be insufficient; and thirdly the 
fact that the analysis has indicated the possible need for another inner ring 
which we have called for the purposes of this paper ring O.  However, his 
objective to divert through traffic would be met in full. We now turn to 
the last of Abercrombie's objectives, which is the question of bringing 
jobs closer to people. 
 
Bringing jobs closer to people 
 
In fact, whether Abercrombie's plan would have resulted in a more even 
distribution of population and jobs cannot be answered conclusively as it 
was never completed. The main discrepancies between his plan and 
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today's network of roads relate to the orbitals - that is what was planned 
and what was actually built. The M25 orbital, finally completed in 1986, 
is a hybrid of Abercrombie's ring D and E (see figure 9a) and thus 
appears to address satisfactorily the problem of spacing issue identified 
above.  
 
Ring C, identified in our analysis as being strategically important but 
under-designated, corresponds to the North and South Circular roads of 
today. This route is of high quality only in locally improved sections and 
many bottlenecks remain especially on the south side. As far as ring B is 
concerned this was proposed but then abandoned in the 1970s. Ring A, an 
interconnected series of existing roads, continues to function as a link 
between the main London rail termini although this is no longer its 
primary function. Finally, as noted, there is no readily identifiable ring O, 
although the model suggests one would be desirable.  
 
Despite only a partial correspondence between Abercrombie and today, 
one can, it is argued, form judgements on the basis present distributions 
of jobs and households, if only to see how far they are out of kilter. A 
number of hypotheses are possible. For example, if Abercrombie were 
correct one would expect the area covered in a given 'drive time' to 
increase with speed but to what extent would this offset the thinning out 
of population and employment? Alternately, to what extent has the failure 
to complete the plan contributed to differences we may observe today 
between people and jobs?  
 
 

 
Figure 10: The density of urban households and employers with distance 
from central London (based on postal addresses). 
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Figure 10 shows the density of residential and non-residential addresses 
on distance from the centre of London, based on a ring count at 1km 
intervals. In using these measures it is implicitly assumed that they are 
proxies for households (population) and employers (jobs). The graph 
shows the heaviest concentration of employers at or near the city centre, 
but a ring of high residential density peaking at just under 6 kms out.  Our 
first reaction therefore would be to suppose that Abercrombie, in its 
admittedly partially completed form, has had little or no effect as 
households and employers remain significantly mismatched. However, 
this view would be based on using distance as a measure of accessibility 
rather than travel time. 
 
If one assumes the average speeds for each ring as shown in table 2, then 
the associated service areas may be approximated using equation (17) to 
give a somewhat different perspective. Table 3, based on this procedure, 
shows the area, households and employers accessible in a 10-minute 
drive time whilst the final column shows the ratio of households to 
employers. Based on the similarity in ratio it appears there is a stronger 
correspondence than might have been supposed between rings A and E 
despite the fact that there are huge differences in areas covered (column 
2). In practical terms it means that potential employees would have 
broadly similar access to jobs if they were based in either ring.  
 
On rings B, C and D, with far higher ratios, the picture is quite different. 
Here, it is evident there is much poorer local access to local jobs than 
elsewhere. A contributory factor to this, it is suggested, is the absence of 
a high quality orbital system, although without more evidence it would be 
overstating the case to say that this situation would not have arisen if 
Abercrombie had been fully implemented.  Finally, ring O, which 
envelops part of the central business districts stands alone in having a 
very low ratio, which is the result of a combination of high employer and 
low residential density. 
 
One of the problems this analysis points to is that, notwithstanding the 
M25, it appears there has been more investment in radial than orbital 
routes. For example, there are now over 20 major intersections on the 
M25 compared with the much smaller number proposed by Abercrombie. 
Road improvements inside ring C have been limited in scale, comprising 
a combination essentially of better traffic management schemes, parking 
restrictions and junction improvements. Circulatory flow has been aided, 
to a degree, by the introduction of the 'red route' network, initiated in 
1989 which has strict parking restrictions and priority public transport 
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lanes. However, a conclusion of this analysis is that the overall impact of 
these initiatives is small compared with what would have happened if 
Abercrombie had been implemented.  
 
 
Ring Radius 

Kms 
Area 
Kms2 

Households 
(000s) 

Employers 
(000s) 

Col (4)/Col(5) 

O 1.85 2.7 81.2 54.2 1.5 
A 3.43 9.26 418.5 66.7 6.27 
B 6.41 24.27 116.5 6.8 17.13 
C 11.99 90.64 207.6 12.1 17.16 
D 19.4 99.18 94.4 6.2 15.23 
E 27 122.5 383.4 59.62 6.43 
 
Table 3: Households and employers in a 10-minute radius from locations 
on each orbital ring in London 
 
Concluding remarks 
 
The methodology presented here is intended as a tool for evaluating 
strategic networks in cities and for investigating wider issues to do with 
relationship between urban form and accessibility. For various reasons 
grand road schemes on the scale of Abercrombie are out of fashion 
although the basic concepts themselves remain valid. Nevertheless, the 
techniques used could be developed to consider any kind orbital-radial 
movement, even where the issues are only to do with incremental 
improvement and making better use of existing road capacity. In other 
words they could provide a benchmark or standard for the strategic 
evaluation of such schemes, although plainly they would be less useful at 
a more micro or tactical level. 
 
One thing that Abercrombie failed to address convincingly and which this 
paper does not address at all was the question of improving public 
transport infrastructure, either as complementary to his road proposals or 
as a subject in its own right. For example, he might have analysed, and 
reached conclusions about how the essentially radially focussed rail 
network in London could be made to function more effectively by 
creating more interchanges, cross-London routes and so forth. It is 
believed these issues are also amenable to the evaluation methodology 
described in this paper so have the potential to make a contribution to 
public transport strategy. One possible development could be to evaluate 
the necessary conditions for integrating services based on population 
distribution, local access, service frequencies and costs. 
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There are hence several areas for future research. They include the areas 
suggested plus, more importantly, developing the methodology to suit 
other kinds of cities and routing schema. Some progress has already been 
made in this direction as well as in applying the techniques to other kinds 
of spatial problems.  
 
 
Annex: Evaluating the service area of an orbital located facility 

 
 
 
 
 
 
 
 
 
 
 
 
 
This annex derives the service area for a facility located on the orbital 
(see figure, ABCD). From equations (1) and (2) in the main text,  
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Let A be the area of ABCD 
 

 
 

 
 

Thus, 
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