168 research outputs found

    Developmental course of psychopathology in youths with and without intellectual disabilities

    Get PDF
    Background: We aimed to describe similarities and differences in the developmental course of psychopathology between children with and without intellectual disabilities (ID). Method: Multilevel growth curve analysis was used to analyse the developmental course of psychopathology, using the Child Behavior Checklist (CBCL), in two longitudinal multiple-birth-cohort samples of 6- to 18-year-old children with ID (N=978) and without ID (N=2,047) using three repeated measurements across a 6-year period. Results: Children with ID showed a higher level of problem behaviours across all ages compared to children without ID. A significant difference between the samples in the developmental courses was found for Aggressive Behaviour and Attention Problems, where children with ID showed a significantly larger decrease. Gender differences in the development of psychopathology were similar in both samples, except for Social Problems where males with ID showed a larger decrease in problem behaviour across time than females with ID and males and females without ID. Conclusion: Results indicate that children with ID continue to show a greater risk for psychopathology compared to typically developing children, although this higher risk is less pronounced at age 18 than it is at age 6 for Aggressive Behaviour. Contrary to our expectations, the developmental course of psychopathology in children with ID was quite similar from age 6 to 18 compared to children without ID. The normative developmental trajectories of psychopathology in children with ID, presented here, can serve as a yardstick against which development of childhood psychopathology can be detected as deviant. © 2007 The Authors Journal compilation © 2007 Association for Child and Adolescent Mental Health

    Palaeontology, the biogeohistory of Victoria

    Full text link
    The broad-scale distribution of fossils within Victoria is controlled by general global patterns in the biological evolution of life on Earth, the local development and environmental evolution of habitats, and the occurrence of geological processes conducive to the preservation of fossil floras and faunas. Early Palaeozoic fossils are mostly marine in origin because of the predominance of marine sedimentary rocks in Victoria and because life on land was not significant during most of this time interval. Middle Palaeozoic sequences have both terrestrial and marine fossil records. Within Victoria, marine rocks are only very minor components of strata deposited during the late Palaeozoic, so that few marine fossils are known from this time period. A similar situation existed during most of the Mesozoic except towards the end of this era when marine conditions began to prevail in the Bass Strait region. During long intervals in the Cainozoic, large areas of Victoria were flooded by shallow-marine seas, particularly in the southern basins of Bass Strait, as well as in the northwest of the State (Murray Basin). Cainozoic sediments contain an extraordinary range of animal and plant fossils. During the Quaternary, the landscape of Victoria became, and continues to be, dominated by continental environments including, at times, extensive freshwater lake systems. Fossil floras and faunas from sediments deposited in these lake systems and from other continental sediments, as well as from Quaternary sediments deposited in marginal marine environments, collectively record a history of rapid fluctuations in climate and sea level.<br /

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table

    A Biased Review of Sociophysics

    Full text link
    Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous reference

    A critical period of prehearing spontaneous Ca2+ spiking is required for hair-bundle maintenance in inner hair cells

    Get PDF
    Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a “critical time period” during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function

    Recommendations for intervertebral disc notochordal cell investigation: from isolation to characterization

    Get PDF
    Background Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called “the notochord”. However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies

    The delivery of personalised, precision medicines via synthetic proteins

    Get PDF
    Introduction: The design of advanced drug delivery systems based on synthetic and su-pramolecular chemistry has been very successful. Liposomal doxorubicin (Caelyx®), and liposomal daunorubicin (DaunoXome®), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (Oncaspar®) or goserelin acetate (Zoladex®) represent considerable achievements. The Problem: As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities. The Solution: The first is using recombinant proteins as drugs i.e. denileukin diftitox (Ontak®) or agalsidase beta (Fabrazyme®). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein the use of synthetic proteins for drug delivery has been reviewed

    Precison Measurements of the Mass, the Widths of ψ(3770)\psi(3770) Resonance and the Cross Section σ[e+eψ(3770)]\sigma[e^+e^-\to \psi(3770)] at Ecm=3.7724E_{\rm cm}=3.7724 GeV

    Full text link
    By analyzing the RR values measured at 68 energy points in the energy region between 3.650 and 3.872 GeV reported in our previous paper, we have precisely measured the mass, the total width, the leptonic width and the leptonic decay branching fraction of the ψ(3770)\psi(3770) to be Mψ(3770)=3772.4±0.4±0.3{M}_{\psi(3770)}=3772.4 \pm 0.4 \pm 0.3 MeV, Γψ(3770)tot=28.6±1.2±0.2\Gamma_{\psi(3770)}^{\rm tot} = 28.6 \pm 1.2 \pm 0.2 MeV, Γψ(3770)ee=279±11±13\Gamma_{\psi(3770)}^{ee} = 279 \pm 11 \pm 13 eV and B[ψ(3770)e+e]=(0.98±0.04±0.04)×105B[\psi(3770)\to e^+e^-]=(0.98\pm 0.04\pm 0.04)\times 10^{-5}, respectively, which result in the observed cross section σobs[e+eψ(3770)]=7.25±0.27±0.34\sigma^{\rm obs}[e^+e^-\to \psi(3770)]=7.25\pm 0.27 \pm 0.34 nb at s=3772.4\sqrt{s}=3772.4 MeV. We have also measured Ruds=2.121±0.023±0.084R_{\rm uds}=2.121\pm 0.023 \pm 0.084 for the continuum light hadron production in the region from 3.650 to 3.872 GeV.Comment: 5 pages, 2 figure

    Harmonization and standardization of nucleus pulposus cell extraction and culture methods

    Get PDF
    Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60–100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide
    corecore