44,437 research outputs found
Design of a video teleconference facility for a synchronous satellite communications link
The system requirements, design tradeoffs, and final design of a video teleconference facility are discussed, including proper lighting, graphics transmission, and picture aesthetics. Methods currently accepted in the television broadcast industry are used in the design. The unique problems associated with using an audio channel with a synchronous satellite communications link are discussed, and a final audio system design is presented
Transient radiation and conduction in a slotted slab and a hollow cylinder
Transient radiation and conduction in slotted slab and hollow cylinde
Direct N-body Simulations of Rubble Pile Collisions
There is increasing evidence that many km-sized bodies in the Solar System
are piles of rubble bound together by gravity. We present results from a
project to map the parameter space of collisions between km-sized spherical
rubble piles. The results will assist in parameterization of collision outcomes
for Solar System formation models and give insight into fragmentation scaling
laws. We use a direct numerical method to evolve the positions and velocities
of the rubble pile particles under the constraints of gravity and physical
collisions. We test the dependence of the collision outcomes on impact
parameter and speed, impactor spin, mass ratio, and coefficient of restitution.
Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as
the primordial disk during early planet formation) so that the maximum strain
on the component material does not exceed the crushing strength. We compare our
results with analytic estimates and hydrocode simulations. Off-axis collisions
can result in fast-spinning elongated remnants or contact binaries while fast
collisions result in smaller fragments overall. Clumping of debris escaping
from the remnant can occur, leading to the formation of smaller rubble piles.
In the cases we tested, less than 2% of the system mass ends up orbiting the
remnant. Initial spin can reduce or enhance collision outcomes, depending on
the relative orientation of the spin and orbital angular momenta. We derive a
relationship between impact speed and angle for critical dispersal of mass in
the system. We find that our rubble piles are relatively easy to disperse, even
at low impact speed, suggesting that greater dissipation is required if rubble
piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be
published in Icarus
Cross and magnetic helicity in the outer heliosphere from Voyager 2 observations
Plasma velocity and magnetic field measurements from the Voyager 2 mission
are used to study solar wind turbulence in the slow solar wind at two different
heliocentric distances, 5 and 29 astronomical units, sufficiently far apart to
provide information on the radial evolution of this turbulence. The magnetic
helicity and the cross-helicity, which express the correlation between the
plasma velocity and the magnetic field, are used to characterize the
turbulence. Wave number spectra are computed by means of the Taylor hypothesis
applied to time resolved single point Voyager 2 measurements. The overall
picture we get is complex and difficult to interpret. A substantial decrease of
the cross-helicity at smaller scales (over 1-3 hours of observation) with
increasing heliocentric distance is observed. At 5 AU the only peak in the
probability density of the normalized residual energy is negative, near -0.5.
At 29 AU the probability density becomes doubly peaked, with a negative peak at
-0.5 and a smaller peak at a positive values of about 0.7. A decrease of the
cross-helicity for increasing heliocentric distance is observed, together with
a reduction of the unbalance toward the magnetic energy of the energy of the
fluctuations. For the smaller scales, we found that at 29 AU the normalized
polarization is small and positive on average (about 0.1), it is instead zero
at 5 AU. For the larger scales, the polarization is low and positive at 5 AU
(average around 0.1) while it is negative (around - 0.15) at 29 AU.Comment: 14 pages 5 figures. Accepted for publication on European Journal of
Mechanics B/Fluids (5/8/2015
Crystallization of a Mos1 transposase-inverted-repeat DNA complex: biochemical and preliminary crystallographic analyses
A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 Å resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 Å, β = 99.3°. The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at ∼3.3 Å. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase
Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris
The emerging multidrug-resistant yeast pathogen Candida auris has attracted considerable attention as a source of healthcare–associated infections. We report that this highly virulent yeast has the capacity to form antifungal resistant biofilms sensitive to the disinfectant chlorhexidine in vitro
Finite Density QCD in the Chiral Limit
We present the first results of an exact simulation of full QCD at finite
density in the chiral limit. We have used a MFA (Microcanonical Fermionic
Average) inspired approach for the reconstruction of the Grand Canonical
Partition Function of the theory; using the fugacity expansion of the fermionic
determinant we are able to move continuously in the () plane with
.Comment: 3 pages, LaTeX, 3 figures, uses espcrc2.sty, psfig. Talk presented by
A. Galante at Lattice 97. Correction of some reference
The integration of on-line monitoring and reconfiguration functions using IEEE1149.4 into a safety critical automotive electronic control unit.
This paper presents an innovative application of IEEE 1149.4 and the integrated diagnostic reconfiguration (IDR) as tools for the implementation of an embedded test solution for an automotive electronic control unit, implemented as a fully integrated mixed signal system. The paper describes how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes
Novel Fiber Design for Wideband Conversion and Amplification in Multimode Fibers
We propose an operating principle to achieve broadband and highly tunable
mode conversion and amplification exploiting inter-modal four wave mixing in a
multimode fiber. A bandwidth of 30 nanometers is demonstrated by properly
designing a simple step-index silica fiber.Comment: Ecoc conference 201
- …
