28,120 research outputs found
Allan Variance Analysis as Useful Tool to Determine Noise in Various Single-Molecule Setups
One limitation on the performance of optical traps is the noise inherently
present in every setup. Therefore, it is the desire of most experimentalists to
minimize and possibly eliminate noise from their optical trapping experiments.
A step in this direction is to quantify the actual noise in the system and to
evaluate how much each particular component contributes to the overall noise.
For this purpose we present Allan variance analysis as a straightforward
method. In particular, it allows for judging the impact of drift which gives
rise to low-frequency noise, which is extremely difficult to pinpoint by other
methods. We show how to determine the optimal sampling time for calibration,
the optimal number of data points for a desired experiment, and we provide
measurements of how much accuracy is gained by acquiring additional data
points. Allan variances of both micrometer-sized spheres and asymmetric
nanometer-sized rods are considered.Comment: 14 pages, 6 figures, presented at SPIE Optics+Photonics 2009 in San
Diego, CA, US
Body mass index and age affect Three-Factor Eating Questionnaire scores in male subjects
This cross-sectional analysis evaluated the effect of age and body mass index (BMI) on Three-Factor Eating Questionnaire scores in males. Subjects (n = 60) were recruited according to BMI status. Each completed the 51-item Three-Factor Eating Questionnaire. The group was split at the median age to produce a "younger" and "older" group for statistical analysis. A 2-way between-groups analysis of variance revealed a significant main effect of BMI on disinhibition (P = .003) and hunger (P = .041) with higher levels found in overweight males compared to healthy-weight counterparts. A significant main effect of age on hunger (P = .046) demonstrated older males were less susceptible to hunger than younger males. These insights provide a better understanding of eating behavior across the male life cycle and may assist health professionals to better guide men in weight management in the light of rising overweight/obesity. (c) 2009 Elsevier Inc. All rights reserved
A predictive phenomenological tool at small Bjorken-x
We present the results from global fits of inclusive DIS experimental data
using the Balitsky-Kovchegov equation with running coupling.Comment: 5 pages, 2 figures, prepared for the Proceedings of 'Hot Quarks 2010
Estimation of Primordial Spectrum with post-WMAP 3 year data
In this paper we implement an improved (error sensitive) Richardson-Lucy
deconvolution algorithm on the measured angular power spectrum from the WMAP 3
year data to determine the primordial power spectrum assuming different points
in the cosmological parameter space for a flat LCDM cosmological model. We also
present the preliminary results of the cosmological parameter estimation by
assuming a free form of the primordial spectrum, for a reasonably large volume
of the parameter space. The recovered spectrum for a considerably large number
of the points in the cosmological parameter space has a likelihood far better
than a `best fit' power law spectrum up to \Delta \chi^2_{eff} \approx -30. We
use Discrete Wavelet Transform (DWT) for smoothing the raw recovered spectrum
from the binned data. The results obtained here reconfirm and sharpen the
conclusion drawn from our previous analysis of the WMAP 1st year data. A sharp
cut off around the horizon scale and a bump after the horizon scale seem to be
a common feature for all of these reconstructed primordial spectra. We have
shown that although the WMAP 3 year data prefers a lower value of matter
density for a power law form of the primordial spectrum, for a free form of the
spectrum, we can get a very good likelihood to the data for higher values of
matter density. We have also shown that even a flat CDM model, allowing a free
form of the primordial spectrum, can give a very high likelihood fit to the
data. Theoretical interpretation of the results is open to the cosmology
community. However, this work provides strong evidence that the data retains
discriminatory power in the cosmological parameter space even when there is
full freedom in choosing the primordial spectrum.Comment: 13 pages, 4 figures, uses Revtex4, new analysis and results,
references added, matches version accepted to Phys. Rev.
On the analytic solution of the pairing problem: one pair in many levels
We search for approximate, but analytic solutions of the pairing problem for
one pair of nucleons in many levels of a potential well. For the collective
energy a general formula, independent of the details of the single particle
spectrum, is given in both the strong and weak coupling regimes. Next the
displacements of the solutions trapped in between the single particle levels
with respect to the unperturbed energies are explored: their dependence upon a
suitably defined quantum number is found to undergo a transition between two
different regimes.Comment: 30 pages, AMS Latex, 8 figures. Submitted to Phys. Rev.
Perturbation theorems for Hele-Shaw flows and their applications
In this work, we give a perturbation theorem for strong polynomial solutions
to the zero surface tension Hele-Shaw equation driven by injection or suction,
so called the Polubarinova-Galin equation. This theorem enables us to explore
properties of solutions with initial functions close to but are not polynomial.
Applications of this theorem are given in the suction or injection case. In the
former case, we show that if the initial domain is close to a disk, most of
fluid will be sucked before the strong solution blows up. In the later case, we
obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows
in terms of invariant Richardson complex moments. This rescaling behavior
result generalizes a recent result regarding large-time rescaling behavior for
small data in terms of moments. As a byproduct of a theorem in this paper, a
short proof of existence and uniqueness of strong solutions to the
Polubarinova-Galin equation is given.Comment: 25 page
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating into
an ambient plasma. We find that the growth times of Weibel instability are
proportional to the Lorentz factors of jets. Simulations show that the Weibel
instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop
Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004
Particle acceleration in electron-ion jets
Weibel instability created in collisionless shocks is responsible for
particle (electron, positron, and ion) acceleration. Using a 3-D relativistic
electromagnetic particle (REMP) code, we have investigated particle
acceleration associated with a relativistic electron-ion jet fronts propagating
into an ambient plasma without initial magnetic fields with a longer simulation
system in order to investigate nonlinear stage of the Weibel instability and
its acceleration mechanism. The current channels generated by the Weibel
instability induce the radial electric fields. The z component of the Poynting
vector (E x B) become positive in the large region along the jet propagation
direction. This leads to the acceleration of jet electrons along the jet. In
particular the E x B drift with the large scale current channel generated by
the ion Weibel instability accelerate electrons effectively in both parallel
and perpendicular directions.Comment: 2 pages, 1 figure, Proceedings for Astrophysical Sources of High
Energy Particles and Radiation, AIP proceeding Series, eds . T. Bulik, G.
Madejski and B. Ruda
Methods of editing cloud and atmospheric layer affected pixels from satellite data
The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data
Exactly Solvable Pairing Model Using an Extension of Richardson-Gaudin Approach
We introduce a new class of exactly solvable boson pairing models using the
technique of Richardson and Gaudin. Analytical expressions for all energy
eigenvalues and first few energy eigenstates are given. In addition, another
solution to Gaudin's equation is also mentioned. A relation with the
Calogero-Sutherland model is suggested.Comment: 9 pages of Latex. In the proceedings of Blueprints for the Nucleus:
From First Principles to Collective Motion: A Festschrift in Honor of
Professor Bruce Barrett, Istanbul, Turkey, 17-23 May 200
- …