4,541 research outputs found

    Pumping for gestural origins: The well may be rather dry.

    Get PDF
    Corballis's explanation for right-handedness in humans relies heavily on the gestural protolanguage hypothesis, which he argues for by a series of “intuition pumps.” Scrutinizing the mirror system hypothesis and modern gesture as components of the argument, we find that they do not provide the desired evidence of a gestural precursor to speech

    Toward High Fidelity Materials Property Prediction from Multiscale Modeling and Simulation

    Get PDF
    The current approach to materials discovery and design remains dominated by experimental testing, frequently based on little more than trial and error. With the advent of ever more powerful computers, rapid, reliable, and reproducible computer simulations are beginning to represent a feasible alternative. As high performance computing reaches the exascale, exploiting the resources efficiently presents interesting challenges and opportunities. Multiscale modeling and simulation of materials are extremely promising candidates for exploiting these resources based on the assumption of a separation of scales in the architectures of nanomaterials. Examples of hierarchical and concurrent multiscale approaches are presented which benefit from the weak scaling of monolithic applications, thereby efficiently exploiting large scale computational resources. Several multiscale techniques, incorporating the electronic to the continuum scale, which can be applied to the efficient design of a range of nanocomposites, are discussed. Then the work on the development of a software toolkit designed to provide verification, validation, and uncertainty quantification to support actionable prediction from such calculations is discussed

    Accelerating Heterogeneous Multiscale Simulations of Advanced Materials Properties with Graph-Based Clustering

    Get PDF
    Heterogeneous multiscale methods (HMM) capable of simulating asynchronously multiple scales concurrently are now tractable with the advent of exascale supercomputers. However, naive implementations display a large number of redundancies and are very costly. The macroscale model typically requires computations of a large number of very similar microscale simulations. In hierarchical methods, this is barely an issue as phenomenological constitutive models are inexpensive. However, when microscale simulations require, for example, high-dimensional molecular dynamics (MD) or finite element (FE) simulations, redundancy must be avoided. A clustering algorithm suited for HMM workflows is proposed that automatically sorts and eliminates redundant microscale simulations. The algorithm features a combination of splines to render a low-dimension representation of the parameter configurations of microscale simulations and a graph network representation based on their similarity. The algorithm enables the clustering of similar parameter configurations into a single one in order to reduce to a minimum the number of microscale simulations required. An implementation of the algorithm in the context of an HMM application coupling FE and MD to predict the chemically specific mechanical behavior of polymer-graphene nanocomposites. The algorithm furnishes a threefold reduction of the computational effort with limited loss of accuracy

    To dash or to dawdle: verb-associated speed of motion influences eye movements during spoken sentence comprehension

    Get PDF
    In describing motion events verbs of manner provide information about the speed of agents or objects in those events. We used eye tracking to investigate how inferences about this verb-associated speed of motion would influence the time course of attention to a visual scene that matched an event described in language. Eye movements were recorded as participants heard spoken sentences with verbs that implied a fast (“dash”) or slow (“dawdle”) movement of an agent towards a goal. These sentences were heard whilst participants concurrently looked at scenes depicting the agent and a path which led to the goal object. Our results indicate a mapping of events onto the visual scene consistent with participants mentally simulating the movement of the agent along the path towards the goal: when the verb implies a slow manner of motion, participants look more often and longer along the path to the goal; when the verb implies a fast manner of motion, participants tend to look earlier at the goal and less on the path. These results reveal that event comprehension in the presence of a visual world involves establishing and dynamically updating the locations of entities in response to linguistic descriptions of events

    Creating Teaching Opportunities for STEM Future Faculty Development

    Get PDF
    Graduate school is an important time for future faculty to develop teaching skills, but teaching opportunities are limited. Discipline-related course work and research do not provide the pedagogy, strategies, and skills to effectively teach and compete for higher education jobs. As future faculty, graduate students will influence the future of science, technology, engineering, and mathematics (STEM) education through their teaching. The purpose of this case study was to examine future faculty’s (graduate students’) perceived teaching development during a semester-long STEM teaching development course. Findings included STEM future faculty’s teaching confidence and skill development in instructional design, preparation, and facilitation; greater development in skill awareness than student awareness and self-awareness; and a focus on knowledge-centered learning environments for future classroom teaching experiences

    The heterogeneous multiscale method applied to inelastic polymer mechanics

    Get PDF
    Mechanisms emerging across multiple scales are ubiquitous in physics and methods designed to investigate them are becoming essential. The heterogeneous multiscale method (HMM) is one of these, concurrently simulating the different scales while keeping them separate. Owing to the significant computational expense, developments of HMM remain mostly theoretical and applications to physical problems are scarce. However, HMM is highly scalable and is well suited for high performance computing. With the wide availability of multi-petaflop infrastructures, HMM applications are becoming practical. Rare applications to mechanics of materials at low loading amplitudes exist, but are generally confined to the elastic regime. Beyond that, where history-dependent, irreversible or nonlinear mechanisms occur, not only computational cost but also data management issues arise. The micro-scale description loses generality, developing a specific microstructure based on the deformation history, which implies inter alia that as many microscopic models as discrete locations in the macroscopic description must be simulated and stored. Here, we present a detailed description of the application of HMM to inelastic mechanics of materials, with emphasis on the efficiency and accuracy of the scale-bridging methodology. The method is well suited to the estimation of macroscopic properties of polymers (and derived nanocomposites) starting from knowledge of their atomistic chemical structure. Through application of the resulting workflow to polymer fracture mechanics, we demonstrate deviation in the predicted fracture toughness relative to a single-scale molecular dynamics approach, thus illustrating the need for such concurrent multiscale methods in the predictive estimation of macroscopic properties

    Combinatorics of BB-orbits and Bruhat--Chevalley order on involutions

    Full text link
    Let BB be the group of invertible upper-triangular complex n×nn\times n matrices, u\mathfrak{u} the space of upper-triangular complex matrices with zeroes on the diagonal and u\mathfrak{u}^* its dual space. The group BB acts on u\mathfrak{u}^* by (g.f)(x)=f(gxg1)(g.f)(x)=f(gxg^{-1}), gBg\in B, fuf\in\mathfrak{u}^*, xux\in\mathfrak{u}. To each involution σ\sigma in SnS_n, the symmetric group on nn letters, one can assign the BB-orbit Ωσu\Omega_{\sigma}\in\mathfrak{u}^*. We present a combinatorial description of the partial order on the set of involutions induced by the orbit closures. The answer is given in terms of rook placements and is dual to A. Melnikov's results on BB-orbits on u\mathfrak{u}. Using results of F. Incitti, we also prove that this partial order coincides with the restriction of the Bruhat--Chevalley order to the set of involutions.Comment: 27 page

    A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease

    Get PDF
    Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis

    Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis

    Get PDF
    Aims/hypothesis: It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. Methods: Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. Results: Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). Conclusions/interpretation: Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.We are grateful to Diabetes UK for financial support via project grant 16/0005480 (to NGM and SJR) and to JDRF for a Career Development Award to SJR (5-CDA-2014-221-A-N). The research was performed with the support of the Network for Pancreatic Organ Donors with Diabetes (nPOD), a collaborative type 1 diabetes research project sponsored by JDRF. Organ Procurement Organizations (OPO) partnering with nPOD to provide research resources are listed at http://www.jdrfnpod.org//for-partners/npod-partners/. ATH and BMS are supported by the NIHR Exeter Clinical Research Facility. BMS is supported as part of the MRC MASTERMIND consortium. TJM is funded by an NIHR clinical senior lecturer fellowship. ATH is supported by a Wellcome Trust Senior Investigator Award (WT098395/Z/12/Z) and an NIHR Senior Investigator award. RAO is supported by a Diabetes UK Harry Keen Fellowship.published version, accepted version (12 month embargo

    The developmental dynamics of terrorist organizations

    Get PDF
    We identify robust statistical patterns in the frequency and severity of violent attacks by terrorist organizations as they grow and age. Using group-level static and dynamic analyses of terrorist events worldwide from 1968-2008 and a simulation model of organizational dynamics, we show that the production of violent events tends to accelerate with increasing size and experience. This coupling of frequency, experience and size arises from a fundamental positive feedback loop in which attacks lead to growth which leads to increased production of new attacks. In contrast, event severity is independent of both size and experience. Thus larger, more experienced organizations are more deadly because they attack more frequently, not because their attacks are more deadly, and large events are equally likely to come from large and small organizations. These results hold across political ideologies and time, suggesting that the frequency and severity of terrorism may be constrained by fundamental processes.Comment: 28 pages, 8 figures, 4 tables, supplementary materia
    corecore