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Abstract

We identify robust statistical patterns in the frequency and severity of violent attacks by terrorist organizations as they grow
and age. Using group-level static and dynamic analyses of terrorist events worldwide from 1968–2008 and a simulation
model of organizational dynamics, we show that the production of violent events tends to accelerate with increasing size
and experience. This coupling of frequency, experience and size arises from a fundamental positive feedback loop in which
attacks lead to growth which leads to increased production of new attacks. In contrast, event severity is independent of
both size and experience. Thus larger, more experienced organizations are more deadly because they attack more
frequently, not because their attacks are more deadly, and large events are equally likely to come from large and small
organizations. These results hold across political ideologies and time, suggesting that the frequency and severity of
terrorism may be constrained by fundamental processes.
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Introduction

Much research on patterns in terrorism has been inspired by

particular historic events and ‘‘waves’’ of specific forms of terrorist

attacks [1,2]. Just as the rise in international skyjackings in the

1970s led to a resurgence of studies of terrorism, the 11 September

2001 attacks renewed interest in why groups resort to terrorism,

the specific choice of attack targets, and the relative effectiveness of

particular counterterrorism measures. As a result, many research-

ers have developed typologies of specific forms of terrorism and

highlighted the distinctiveness of different terrorist groups. By

contrast, in this manuscript we examine whether there are

fundamental patterns in the frequency and severity (number of

deaths) of deadly events carried out by terrorist organizations and

what mechanisms might generate them.

Little research on terrorism has focused on directly modeling

individual event frequency and severity, and the way these change

over an organization’s lifetime. When deaths are considered, they

are typically aggregated and used as a covariate to understand

other aspects of terrorism, e.g., trends over time [3,4], the when,

where, what, how and why of the resort to terrorism [5–7],

differences between organizations [8], or the incident rates or

outcomes of events [3,9]. Such efforts have used time series

analysis [3,4,9], qualitative models or human expertise of specific

scenarios, actors, targets or attacks [10] or quantitative models

based on factor analysis [11,12], social networks [13,14] or formal

adversarial interactions [6,15,16].

Our approach is different and complementary to these

approaches, focusing on global trends and patterns in the

frequency and severity of events [17–25], rather than on event

particulars or motivations. By focusing our analysis at the global

scale, the importance of individual decisions in specific contexts is

in fact lessened, due to the central limit theorem and the rough

independence of individual events; as a result, the importance of

generic non-strategic processes is enhanced and these processes, if

any, may be studied. Explanations of such patterns must thus focus

on processes or constraints that are independent of variations in

context or specific motivation and may include physical con-

straints, network effects and endogenous population dynamics,

which are well suited to explain the behavior of strategically

uncöordinated populations of actors [24]. This approach to

investigating the fundamental laws of terrorism has much in

common with that of statistical physics, in which the self-averaging

properties of independent events allows for interesting population-

level properties to emerge from microscopic system chaos. This

statistical physics-style approach is increasingly being applied to

study complex social systems [26–28], yielding a number of novel

insights.

Here, we aim to shed new light on the fundamental processes

governing the frequency and severity of terrorist events by

studying their statistical relationship with the organizations that

generate them. Our aim is to identify global patterns in these

relationships and to explain their origin mechanistically. We

employ a combination of disaggregated data analysis, studying a

large database of terrorist events worldwide from 1968–2007,

statistical modeling and inference, computational modeling and

regression analysis to validate our mechanistic hypotheses. By

shedding new light on these large-scale patterns and trends in

terrorism, and on how such patterns emerge from local-level

behaviors, this large-scale statistical or pattern-based approach can

supplement formal models of strategic interactions, inform

counter-terrorism policy and clarify our general ability to forecast

or anticipate future terrorist events or trends.
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Patterns in global conflict
A pattern-based approach to studying conflict owes much to the

seminal work in the early 20th century of Lewis Fry Richardson–a

physicist and meteorologist known for collecting data on conflicts

(‘‘deadly quarrels’’), modeling arms races using differential

equations, as well as early contributions to understanding the

frequencies and severities of wars. Specifically, Richardson [29,30]

identified the remarkable pattern that the frequency of wars decays

like the inverse power of their severity. (Power-law distributions

can indicate unusual underlying or endogenous processes, e.g.,

feedback loops, network effects, self-organization or optimization.

From a purely statistical perspective, power-law distributions

generate large events orders of magnitude more often than we

would expect under a Normal assumption. Recently, power-law

distributions have been identified in a wide range of social and

biological systems [31]. See [32], [33] and [34] for reviews, or

Appendix A of [35] for a gentle introduction.) This empirical

pattern implies that there is no fundamental statistical difference

between rare but catastrophic wars and more common but less

severe wars–the likelihoods of both are described by a single

mathematical function:

Pr (event with severity x) ! x{a,

where x counts the number of fatalities (severity) and a is the

‘‘scaling exponent,’’ which controls how quickly the frequency

decreases as severity increases. It also implies that the underlying

social and political processes for both large and small wars may be

fundamentally the same, i.e., large wars may simply be ‘‘scaled

up’’ versions of small wars. In general, the identification of a power

law implies that studying the statistically more common events can

shed light on certain aspects of extremely rare events. (Seismol-

ogists study large earthquakes in this way: the frequencies of both

large and small quakes follow a power-law distribution, called the

Gutenberg-Richter Law, and the physical processes that generate

both small and large quakes are fundamentally the same).

Recently, Clauset et al. [20,31] showed that this same pattern–a

power-law, ‘‘Richardson’s Law’’–also holds for the frequency of

severe terrorist attacks (reported fatalities) worldwide, while [23]

suggest a similar pattern for events within insurgencies. The

power-law pattern in terrorism is highly robust: it persists over the

past 40 years despite large structural and political changes in the

international system and is independent of the type of weapon

used (explosives, firearms, arson, knives, etc.), the emergence and

increasing popularity of suicide attacks, the demise of many

individual terrorist organizations, and the economic development

of the target country.

Thus, fundamental regularities in terrorism can and do emerge

at the global level despite the highly contingent and context-

specific nature of the individual attacks, conflicts and decisions.

Insights into how these patterns’ arise will likely shed new light on

the underlying social or political processes that drive and constrain

global trends and on effective policies for responding to or

managing those processes.

Methods

We consider the frequency and severity of attacks over the

lifetime of individual terrorist organizations, and the question of

whether organizations exhibit common statistical patterns in these

behaviors. We argue that organization size (number of personnel)

plays a fundamental role in limiting the overall frequency, but not

the severity, of violent events by a group. The key idea is that

organization size and its overall production rate of events are

linked. If events lead to growth in any way, then this link implies a

positive feedback loop in which each attack increases the

production rate of future attacks. Thus, a terrorist organization

can be viewed as a kind of factory whose principal product is

political violence, and whose proceeds are reinvested in increased

production capacity.

To test these ‘‘developmental dynamics’’ hypotheses, we present

novel statistical analyses of the behavior of nearly 400 terrorist

organizations worldwide over the period 1968–2008. We find

strong evidence for precisely this kind of generic acceleration in

event production. This supports the notion that an organization’s

available labor, i.e., the size of its militant wing, is a fundamental

constraint on the overall frequency of its attacks. We further show

that the rate at which an organization cycles through the positive

feedback loop can depend on covariates like its political ideology,

with religiously-motivated organizations accelerating (growing) the

fastest. In contrast, we find no evidence that event severity depends

on organizational size or experience. Instead, the distribution of

attack severities follows a rough form of Richardson’s Law

independent of size, experience or political motivation.

These results imply that very large events are equally likely to be

generated by small groups as by large groups, and that larger

organizations are indeed more deadly [8], not because their

individual attacks are systematically more spectacular but because

they typically carry out many more attacks. That is, the size of the

beast directly determines the overall level of terror activity

(frequency) but not the quality (severity) of those actions.

Recently, Johnson et al. [25] used a similar approach to analyze

the timing of events in the Iraq and Afghanistan conflicts, which

was in turn based on an earlier version of this manuscript [22].

Although similar statistical patterns to the ones we describe here

were observed in those conflicts, a different explanation was

offered for their origin. We will revisit this comparison and

comment on the problems our statistical results pose for the

explanation offered by [25].

Impact of Size on Frequency

H1 Labor-constraints: the overall production rate of violent

events by an organization depends on its size, and thus the

time between consecutive attacks Dt is roughly inversely

proportional to the size s of the organization. Mathemati-

cally, s/1/Dt.

In other words, the production of terrorist events cannot be

automated. If this were possible, organizations could produce

arbitrary numbers of events without needing to grow in size, much

like a fully automated factory requires essentially no human

personnel to function. (In this light, cyber terrorism is an interesting

case: it remains unclear to what degree the planning and execution

of cyber terrorist attacks can be done automatically, by computers.

Our current belief is that cyber terrorism is also not mass

produceable and thus some labor constraint will persist, although

it may be substantially lessened relative to physical terrorism).

Instead, we argue that each terrorist event requires significant

human involvement, e.g., to conceive, plan and execute it. This

requirement for human effort implies that for the production rate

of an organization to decrease, it must add additional members to

produce them. And, the resultant increased rate occurs not

because more hands make any individual event proceed more

quickly, but because multiple events may be carried out in parallel.

That is, the overall production rate of the organization is like the

production rate of an entire factory; as the factory (organization)
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adds internal independent production lines (terrorist cells), the

effective time between new events falls even though each

production line operates at a constant rate.

It is important to recognize that H1 does not imply that the only

way to increase the group-level production rate of attacks is

through organizational growth. Indeed, many aspects of event

production surely do benefit from technology or efficiency

improvements [36–39]. Instead, H1 implies that such factors can

only moderate, not eliminate, the fundamental constraint that size

places on production. To the extent that these factors decrease the

time between an organization’s events, the literature on learning

suggests that the overall impact will be modest [39]. In contrast,

increases in labor, which allow many terrorist cells to operate in

parallel, can lead to much larger improvements.

Finally, we note that this constraint should be strongest for small

organizations, who likely have the worst access to efficiency-

improving resources like specialized personnel, training facilities or

factories and who may reap the largest benefit, e.g., media

visibility, from striving to maximize their event production.

Because most organizations begin small and grow over time, this

should be most evidence early in the lifetime of an organization. (A

spatial corollary of H1 is that if an ‘‘organization’’ is defined as

those militants within some geographic locale, e.g., a province or

district, then the frequency of events within that locale will be

roughly inversely proportional to the number of militants there.

That is, the s!1=Dt relationship should hold when both s and Dt
are defined by a geographic boundary. Organizational ‘‘growth’’

can then be understood as either immigration or recruitment of

new militants).

Events, Recruitment and Growth
What role do attacks play in changing organizational size? If an

event gains the organization wider visibility among potential

members or sympathizers, the organization may grow in size as a

result of that event. (Decreases in size are likely driven by distinct

social processes (see [40]), which we do not consider here).

H2 Event-recruitment: organizational growth (increased s) is

partly driven by recruitment associated with the production

of new events (increased k), i.e., events lead to recruitment

which leads to organizational growth. Mathematically, ds/

dk.0.

H2 does not imply that growth comes only from violence-

related recruitment. So long as recruitment is partly based on the

production of violent events, H2 implies a correlation between

increases in size and increased event production.

Frequency Acceleration
Together, H1 and H2 imply a positive feedback loop in which

attacks lead to recruitment which leads to organizational growth

and thus an increased group-level production of new attacks. So

long as a portion of the growth is allocated to producing additional

events, i.e., so long as the militant wing grows with the overall

organization, H1 and H2 jointly imply H3.

H3 Frequency-acceleration: as an organization carries out more

attacks (increased k), the time between subsequent attacks Dt

decreases. Mathematically, dDt/dk,0.

That is, H1 predicts s!1=Dt while H2 predicts ds=dkw0.

Eliminating the common factor of s yields the prediction that

dDt=dkv0, in which the continued production of violent events

produces a decreasing delay between those events. (This dynam-

ical relationship produces a similar pattern to that observed in

‘‘learning’’ or ‘‘progress curves,’’ in which continued production

covaries with lowered production costs or time [36,39,41].

Although the pattern is similar, the mechanism is different).

Impact of Size on Severity
Increased size may bring greater access to capital and skilled

labor, e.g., experienced professionals, advanced arms, intelligence,

etc., and thus more spectacular attacks.

H4 Severity-increase: the severity x of a new attack increases

with organizational size s and, via H2, the number of attacks

k. Mathematically, dx/ds.0 and dx/dk.0, respectively.

Combined with H2, H3 implies that attacks by experienced,

larger groups should be consistently and significantly more deadly

than those of less experienced or smaller groups.

H4 assumes a tangible benefit for maximizing the severity of

attacks, e.g., to gain wider visibility for the organization’s cause or

to demonstrate power or resolve. Such incentives are not foregone

conclusions: severe attacks may also attract harsh attention from

state-level actors, leading to repression, police action or the

destruction of physical or financial resources. They may also

induce counter-productive effects on potential sympathizers, e.g.,

due to the shockingness of spectacular events. As a result, we

consider the theoretical argument supporting the severity-increase

hypothesis to be marginal.

Results

Model of terrorist organizations
To illustrate these interactions between an organization’s size

and the frequency and severity of attacks over its lifetime, we

construct a simple model of a terrorist organization’s development

(see Figure 1 for a schematic).

Historically, terrorist organizations begin as a small collections

of terrorism-inclined individuals [42]. Let this initial collection be

composed of roughly g individuals, which denotes the typical or

characteristic size of a terrorist cell. The particular value of g is not

important, but may depend political ideology, socio-economic

context [43], the attack’s target, etc. The cell plans and conducts

its first attack, which gains it some visibility, via either traditional

media coverage or informal channels. Subsequent recruitment

yields a number of additional members n (H2), and now the

organization is larger. Again, the particular value of n is not

important, but likely depends on context-specific factors.

Each cell continues planning and carrying out new attacks,

roughly once every t days (H1). Newly recruited members form

new cells, of size g (H1) and new cells plan and carry out their own

attacks in parallel. It is this parallelism that allows the larger

organization to appear to be acting more quickly, even though the

planning time t for any particular event remains fixed. An attack

by any cell leads to overall organizational growth via recruitment

(H2), which in turn increases the organization’s overall production

rate of attacks by adding new cells (H3). Finally, as the group

grows, the increased manpower also increases its ability to carry

out more severe events (H4), e.g., because more supporting roles

allow better surveillance, access to better equipment, etc.

Coordinating the activities of these additional individuals, or the

development of non-violent initiatives like a political wing or the

provision of social services, will draw some members away from
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these militant activities. However, so long as recruitment continues

to grow the number of militant cells, the positive feedback loop

remains.

This simple model intentionally omits many factors, such as

organizational structure, political motivation, geography, etc., that

are likely to impact the behavior of any particular organization.

We also intentionally omit any potential response by state-level

actors and their consequences on the organization’s evolution.

This last decision is made in order to focus on the development of

the organization, i.e., its early lifetime, where labor constraints are

likely most profound, although such processes could naturally be

added. Omitting these factors keep the model simple and allows us

to make quantitative predictions of the generic relationship

between organization size and the frequency and severity of its

attacks via direct numerical simulation. To mimic the natural

variation between particular events, for each new event being

planned by a cell, we draw a delay t from a fixed distribution. (In

general, our results hold so long as the distribution of t is well-

behaved and stationary with respect to k.) Specification details and

computer code for the simulation are given in Text S1.

Each simulated terrorist organization generates a unique

sequence of events representing the collective behavior of its cells

over time, and we extract the generic behavior by computing

quantiles over variables of interest for many such simulated

organizations. Here, we are interested in how the delay between

subsequent attacks Dt varies with cumulative number of events k

(H3), and how the size of the organization, measured by the

number of cells s=g varies with calendar time t from the first event

(H2). H4 predicts that event severity correlates with organization

size and thus no additional information is gained by explicitly

simulating event severities.

Figure 2 shows the results for 10,000 simulated organizations,

for three choices of the ratio n=g, which represents the growth rate

of the organization’s militant wing. When n=gv1 regime,

organizational growth is slow because multiple events are required

to establish a new terrorist cell; but, when n=gw1, organizational

growth is fast because each event produces at least one new cell.

The generic behavior of our model is clear: (i) organizational

size grows exponentially with time, at rate n=g, and (ii) the

feedback between size and production rate induces a strong

correlation between experience, size and the frequency of events.

Finally, the model produces a universal functional relationship

between delay Dt and cumulative production k of the form

Dt!k{1, and this relationship is independent of the growth rate

n=g.

This latter point is worth reiterating: so long as each new event

leads to some marginal increase in the overall production rate

(H2), a positive feedback loop between size and event production

will exist. This feedback will be linear Dt!k{1 if the growth rate

n=g does not vary with experience k. If the militant wing is a

decreasing fraction of the overall organization (n=g decreases over

time), the feedback will be sub-linear and k{b with bv1, while if

it increases with time, the feedback will be super-linear and bw1.

These properties imply that if a growing organization does

provoke responses from state-level actors, these responses will not

break the feedback loop unless they succeed in both limiting the

growth and reducing the size of the organization, a point to which

we will return later.

These quantitative predictions can be tested with empirical data

by examining Dt as a function of k across many organizations. If

Dt!k{1 holds in the data, we have strong evidence for precisely

the size-mediated feedback loop described here.

Empirical data
Organizational size data were drawn from the Big Allied And

Dangerous (BAAD) data set [8], which offers the currently best

available size estimates for terrorist organizations worldwide.

Other sources of size data lack the breadth or temporal resolution

for accurate analysis. For instance, the START program and the

MIPT database previously held a small number of estimates of

uncertain accuracy, generated by Detica, Inc., a British defense

contractor, and [44] compiled a database of information on 649

terrorist groups that included only estimates of the maximum size

over a group’s entire lifetime. The BAAD data were generated by

a survey of domain experts at the Monterey Institute of

International Studies (MIIS) who estimated the rough order of

magnitude (1–100, 100–1000, 1000–10,000 and w10,000 per-

sonnel) of the maximum size achieved by each of 381 groups,

between 1998 and 2005, identified in the [45] event database. Of

these, 161 organizations conducted at least one deadly attack, and

80 conducted at least two in that period.

To ensure good compatibility with this organization list, event

data were drawn from the MIPT Terrorism Knowledge Base [45],

which contained 35,668 terrorism events, of which 13,274 resulted

in at least one fatality, as of 29 January 2008. (Other sources of

event data include the Global Terrorism Database [46], the

Worldwide Incident Tracking System [47] and the ITERATE

data [48]. We note that neither these nor the MIPT database

provide complete and consistent worldwide coverage.) For the

period 1968–1997, the MIPT database includes mainly interna-

tional events involving actors from at least two countries, while for

1998–2008 it includes both domestic and international events

from much of the world. (The MIPT data were originally drawn

from the RAND Terrorism Chronology 1968–1997, the RAND-

MIPT Terrorism Incident database (1998–Present), the Terrorism

Indictment database (University of Arkansas & University of

Δt ∝ 1/s
s → s + η

x ∝ s

Figure 1. A model of terrorist organizations. A schematic illustrating the feedback loop relationship between size s and the frequency and
severity of attacks: the delay between subsequent attacks Dt is inversely related to an organization’s size s while the severity of subsequent attacks x
grows with s; new events lead to recruitment which leads to growth, which increases the size variable s.
doi:10.1371/journal.pone.0048633.g001
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Oklahoma), and DFI International’s research on terrorist organi-

zations. In 2008, however, the U.S. Department of Homeland

Security discontinued its funding for the maintenance of the

database in favor of the University of Maryland’s START center’s

Global Terrorism Database [46].) Each event is defined as an

attack on a single target in a single location (city) on a single day.

For example, the Al Qaeda attacks in the United States on 11

September 2001 appear as three events in the database, one for

each of the New York City, Washington D.C. and Shanksville,

Pennsylvania locations. Each record includes the date, target, city

(if applicable), country, type of weapon used, terrorist group(s)

responsible (if known), number of deaths (if known), number of

injuries (if known), a brief description of the attack and the source

of the information.

The organizations identified in the MIPT database are a

superset of those contained in the BAAD data set, and we will use

these additional data analyses that do not require size estimates.

For each organization, we extracted the full sequence of its

attributed or claimed events. This yields 10,335 events worldwide

from 1968–2008 associated with 910 identifiable organizations.

For each of the 1,204 events worldwide with unknown severity, we

assign a severity of x~0 to preserve timing information. Further,

because of the day-level temporal resolution of events in the

database, multiple events on the same day by the same group have

ambiguous ‘‘delay’’ (inverse frequency). We eliminate this ambi-

guity by aggregating such events into a single ‘‘event day’’ with

severity equal to the sum of the component severities. This slightly

reduces the number of events, mainly for the most active

organizations late in their life history. As a consequence, the

minimum resolvable delay in the database for two events by the

same organization is Dt~1 day.

Regression models
Before analyzing the evolution of attacks by individual

organizations we conduct static or cross-sectional regression

analysis at the level of individual organizations. We examine the

relationship between group size and attack patterns, in particular

the delay between attacks, the experience of a group in terms of

number of events, and the severity of attacks.

To recap, we expect larger groups to generate a larger number

of attacks, have shorter delays between attacks (H1), and generate

more severe attacks even accounting for other attack patterns (H4).

We can evaluate H1 by comparing maximum group size s from

BAAD and the minimum delay between attacks Dt in MIPT. We

can assess H4 by comparing size and the maximum severity x of

attacks. Finally, H2 implies that larger groups should have higher

maximum experience k or cumulative number of events. (H3,

postulating a declining delay with subsequent attack, cannot be

evaluated with static data; we return to this point later).

Although group size should predict attack patterns, individual

measures such as maximum severity will be at least in part a

function of the total number of attacks. That is, for any

distribution of severities, an increased production rate (sampling

intensity) will naturally inflate the maximum severity over a fixed

time period, even if the distribution is stationary. Thus, in order to

examine the partial relationship between size and the related

attack variables–or their independent predictive value on size once

we take into account the other attack pattern characteristics–it is

more convenient to consider to what extent we can account for

size as function of the attack measures.

We use an ordered logit regression model of size since the

BAAD data give order-of-magnitude estimates of maximum size.

As the BAAD data pertain to the time period 1998–2005, we

restrict our attack pattern measures to attacks during this same

time period. Since the distributions of minimum delay, maximum

experience, and maximum severity are all highly skewed we take

the natural logarithm, adding 1 to severity to prevent taking the

log of 0 in the case of non-fatal events. We report the empirical

estimates in Table 1.

The results display a significant negative relationship between

fatal attack delay and group size, consistent with our claim that

larger groups will have shorter delays between attacks (H1). We

also find a positive relationship between group size and

experience, consistent with our claim that larger groups generate

a higher number of attacks (H2). Finally, the maximum severity of

the attacks is not significantly related to group size, once we have

controlled for delay and experience variables. This contradicts the

hypothesis that larger groups are systematically more likely to

generate severe attacks (H4). Overall, the model places 58.75% of

all the groups in the correct bins for group size. Only 5% of the

observations are badly mis-classified, with predictions off by more

than one order of magnitude. By contrast, a null model predicting

all groups to have the modal size category (100{1000) only

classified 43.75% of the observations correctly. (We considered a

number of alternative specifications. Severity remains an insignif-

icant predictor of group size when we consider combinations of

Figure 2. Simulated development of a terrorist organization. (A) Median event delay Dt vs. cumulative number of events k, for 10,000
simulated terrorist organizations and three choices of the number of cells v/g added per event. Dashed line shows the function Dt/k21, from Eq. (1).
(B) Median size (number of terrorist ‘‘cells’’ s/v) vs. calendar time from the first event, showing exponential growth with rate set by v/g.
doi:10.1371/journal.pone.0048633.g002
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delay and experience for both deadly and non-deadly attacks.

Using a linear regression model rather than ordered logit does not

change our substantive conclusions).

Since the BAAD data cover only about half of the identifiable

organizations in the MIPT database over a restricted time span

(1998–2005), we conduct a supplementary analysis with the full

MIPT dataset, where we consider how a group’s total experience

can be accounted for by differences in minimum delay and

maximum attack severity. (We limit the analysis to MIPT

organization that generated at least two events (frequency) and

one deadly event (severity); only 167 organizations satisfy these

criteria.) Table 2 report the results for a linear regression with

logged values for all the terms for fatal (F ) and all attacks (A,

including non-fatal attacks) experience respectively. The results

clearly show that the minimum delay is a significant predictor of

group experience, and they mildly support the claim about

severity, as the positive coefficient for severity is significantly

different from 0. However, comparing the change in the R2 for

estimating the model with and without the severity and delay

terms respectively indicates that dropping the severity variable

leads to a relatively small decline, while the impact of omitting the

delay variables is substantial. Hence, variation in delay between

attacks accounts for much more of the variation in experience than

does severity.

These static analyses provide substantial preliminary evidence

in support of H1 and H2 and little evidence to support H4. We

now go beyond static analyses and test our predictions for all

organizations in the MIPT database using a novel dynamical

analysis tool called a ‘‘development curve’’.

Developmental dynamics
A development curve is a statistical tool that measures the

evolution of organization behavioral variables along a common

quantitative timeline [22]. It is similar in structure and use to the

‘‘experience’’, ‘‘learning’’ and ‘‘progress curves’’ sometimes used in

management science [36,39] to quantify the relationship between

per-item production cost (or time) and ‘‘experience’’ (cumulative

item production). Because we study behavioral variables rather

than the costs of production, and to explicitly avoid implying

learning-based mechanisms, we choose a distinct term. The

analysis of these developmental curves facilitates direct compar-

isons of the behaviors of different groups at similar points in their

life histories, which is useful for testing our hypotheses.

We instrument a common timeline using organizational

experience k, defined as the cumulative number of events

produced by or associated with a particular organization, and

we compare the delay Dt between the kth and (kz1)th events, or

the severity x of the kth attack, across all organizations in our

sample. For each of the 910 organizations, we extract from the

MIPT event data an ordered sequence of coordinates

f(1,z1),(2,z2), . . .g, which represent the group’s behavioral trajec-

tory on the variable z over its lifetime. The visualization of such

trajectory is typically made using double-logarithmic axes, as

illustrated in our simulation results in Figure 2. Although the curve

construction itself ignores details such as the date of an

organization’s first attack, its location, ideology, etc., these

variables can be used for subsequent analysis, e.g., comparing

the trajectories across covariates.

Constructing a development curve for an individual organiza-

tion (see Text S1) can facilitate the investigation of specific

behavioral dynamics of individual groups over their lifetimes.

However, the specific factors associated with particular organiza-

tions may obscure the generic tendency embodied by our

hypothesis. To investigate these, we examine the average

trajectory across many organizations by tabulating the conditional

distribution Pr (Dt Dk) of delays, for a specified level of experience

k. Thus, an organization that has carried out k� events contributes

to each of the kƒk� conditional distributions. This approach

provides a strong test of the frequency-acceleration (H3) and

attack-severity hypotheses (H4) predictions.

Frequency of attacks over time. Figure 3A shows the

composite frequency curve for all organizations in our study. To

reduce the overprinting effects of showing the trajectories for so

many organizations, we bin the values of k on a logarithmic scale

and plot the mean and 1st and 3rd quartiles of the data within

each bin. Remarkably, the observed empirical pattern agrees very

closely with our simulation model’s predictions (Figure 2).

The progressive decrease of the delay distributions indicates a

generic tendency toward faster production with increased expe-

rience for all types of organizations, in strong agreement with the

frequency-acceleration hypothesis (H3). But, the relationship

between delay and experience is not deterministic: not every

event occurs more quickly than the last but the statistical tendency

toward shorter delays is clear.

A terrorist organization thus typically begins in the low-

frequency domain (large Dt) and moves in fits and starts toward

the high-frequency domain (small Dt). This trend is not subtle: the

median delay after the 1st event is Dt~124 days, while by the

12th event, it has dropped to 35 days and by the 25th, the next

event typically comes only 21 days later. This transition to fast

production does take considerable calendar time: for groups that

Table 1. Ordered logit regression of group size, by fatal
attack patterns.

Variable b̂b SE(b̂b)

Delay: ln min(Dt) 20.351 0.119

Experience: ln max(k) 0.707 0.193

Severity: ln max(x) 0.150 0.159

âa0D1 20.163 0.840

âa1D2 2.652 0.895

âa2D3 5.039 1.056

N = 80, LR x2 = 41.42, df = 3, 58.75% correctly classified.
doi:10.1371/journal.pone.0048633.t001

Table 2. Linear regression of experience, by attack delay and
severity.

Fatal attacks (F) All attacks (A)

Variable b̂b SE(b̂b) b̂b SE(b̂b)

DelayF: ln min(Dt) 20.119 0.042 20.110 0.040

DelayA: ln min(Dt) 20.778 0.110 20.795 0.105

DelayF6
DelayA

0.074 0.017 0.073 0.016

Severity: ln max(x) 0.190 0.059 0.150 0.056

âa 3.115 0.236 3.336 0.225

N = 167, R2 = 0.545 N = 167, R2 = 0.565

R2 (:severity) = 0.515 R2 (:severity) = 0.546

R2 (:delay) = 0.222 R2 (:delay) = 0.182

doi:10.1371/journal.pone.0048633.t002
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achieve k~12 events, the median total calendar time between the

first and twelfth event is 4:4 years. Similar results hold for the

timing between deadly attacks.

None of the sampled organizations progressively slowed their

attack rate over time, moving from high-frequency to low-

frequency. A few unusual groups, such as Al-Qaeda in the Land

of Two Rivers, begin and remain in the high-frequency domain.

But, Al-Qaeda in the Land of Two Rivers is an interesting case

because it is well-known to have operated under a different name

prior to 2004 [49]; thus, their initial high-frequency behavior can

be interpreted as support for the labor-constraint hypothesis (H1)

because their initial larger size–a hold over from their previous

identity–allowed them to ‘‘begin’’ life (k~1) at a relatively high

initial production rate of attacks.

Statistical model for the frequency of

attacks. Quantifying the dynamical relationship between delays

and experience allows us to go beyond our static analyses. To do

this, we statistically model the conditional distribution Pr (Dt Dk)
from which delays are drawn and how this distribution varies with

experience.

For these data, a truncated log-normal distribution, with the

following mathematical form

Pr (Dt Dk) ! exp
{( logDtzb log k{m)2

2s2

" #
, ð1Þ

provides an excellent fit to the empirical delay data for all

organizations. Here, s2 is the variance in delays at a given k, m is

related to the characteristic delay between attacks and b controls

the rate at which that delay decreases with increased experience k.

That is, b governs the strength of the feedback loop between

organizational experience and the production of new events. To

include the effect of the minimum timing resolution Dt§1 present

in the empirical data, we force Pr (Dt Dk)~0 for Dtv1 day.

This mathematical structure implies that the typical delay

between attacks generically decreases according to a power-law

function with increasing experience.

Dt&em k{b: ð2Þ

(Details of this derivation are given in Text S1.) Thus, if bw0,

we will observe a transition toward increasingly fast event

production, indicating support for H3. In contrast, if b~0,

production rates do not vary with organizational experience, while

if bv0, production rates will decrease (larger Dt) with increasing

experience. In the bw0 regime predicted by H3, the acceleration

effect is dampened as the mean delay asymptotes to the minimum

timing resolution at Dt~1; this produces slight upward curvature

for large values of k (see Text S1).

The particular value of b has a strong effect on the material

dynamics of the feedback loop between increasing experience and

increasing production. If b~1, then the feedback loop is linear, as

in our simulation model, and increases in organizational

experience lead to proportional increases in event production.

Linearity implies that the marginal growth associated with an

additional event is relatively constant over the organization’s

lifetime and a roughly constant fraction of new recruits are

allocated to increase overall tempo of militant activities.

In contrast, b?1 implies a non-linear feedback process.

Notably, non-linear feedback processes are not common models

of social processes (but see the literature on arms-races,

particularly [17] and [50]). Traditional models often focus on

proportional effects in which increases in one variable cause

proportional changes in other variables. In non-linear feedback

processes, small increases in one variable can produce dramatic

and continuing swings in other variables, leading to highly

unpredictable dynamics [51].

When bw1, the feedback is super-linear, and one or both of

these factors must increase with k. That is, either per-event growth

in militant activities increases over time or an increasing fraction of

growth is allocated to militant activities. When bv1, the feedback

is sub-linear and the marginal recruitment benefits of new events

decrease over time or they are constant but recruits are

increasingly allocated toward non-militant activities.

Fitting this model directly to the empirical data on all events, we

find that the maximum likelihood estimate is b̂b~1:0+0:1 (std.

err.), indicating linear feedback. (This approach to estimating the

parameter gives weight to the events early in organization’s

lifetime that is proportional to the number of such events in our

data set; in contrast, a simple regression approach on the mean

delays would bias the estimate by giving significant weight to the

rare but long-lived groups.) Using a Monte Carlo simulation

against a null model with fixed b~0 (no acceleration over time)

Figure 3. Timing of events. (A) Mean delay ,log Dt. between attacks, with 1st and 3rd quartiles, vs. group experience k. Solid line shows the
expected mean delay, from the statistical model described in the text. (B) A ‘‘data collapse’’ showing the alignment of the re-scaled conditional delay
distributions Pr (Dt:kb̂b Dk) with the estimated underlying log-normal distribution, as predicted by the model.
doi:10.1371/journal.pone.0048633.g003
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and with m, s estimated using maximum likelihood given the fixed

b value, we find that the value of b̂b is highly statistically significant

(pv0:001). (Fitting to deadly attacks alone yields a highly

statistically significant b̂b~1:1+0:2, slightly in the super-linear

regime, but this value is statistically indistinguishable from b~1).

A linear feedback implies that the marginal growth from event-

driven recruitment does not vary much with organizational size or

experience. Furthermore, it implies that organizational learning in

terrorist groups [25,38], in which the production rate increases

due to improved efficiency of a fixed number of individuals, plays

a lesser role in explaining the overall acceleration of event

production than do the effects of increasing organizational size,

because learning would mimic the effect of super-linear feedback

by allowing a constant number of militants to behave identically to

an increasing number.

A strong test of the statistical model’s plausibility is its prediction

that each of the k conditional delay distributions Pr (Dt Dk) is a

scaled version of the underlying log-normal distribution LN(m,s2).
To test this prediction, we re-scale the empirical distributions by

the predicted factor, i.e., we multiply each delay variable Dti by

k
b̂b
i , and then plot them against the estimated underlying log-

normal distribution. A close alignment of these re-scaled

conditional distributions, also called a ‘‘data collapse’’ [52], is

strong evidence for the hypothesized data model over a wide range

of alternatives. Furthermore, for an alternative model to produce

such a data collapse requires that it follows the log-normal form

closely enough to be effectively equivalent. Figure 3B shows the

results of this test, illustrating an excellent data collapse, with each

of the re-scaled log-normal conditional distributions closely

aligning with the underlying log-normal form.

These results also hold when we consider the development

curves for groups with a common political ideology (see Text S1).

[53] divides the political motivations for terrorism into four

conventional categories: nationalist-separatist, reactionary, reli-

gious and revolutionary. We coded according to Miller’s criteria

the 131 most prolific groups in our sample (all with k§10 deadly

events), which accounts for 85% of events, and fitted Eq. (1) to the

data within each ideological category. Organizations with multiple

political motivations were placed in multiple categories, which

would only lessen any differences between estimated parameters

for different categories. Within each of these categories, we

observe the same acceleration pattern, with the strongest

acceleration (largest b) appearing for religious groups (Table 3).

Severity of attacks over time. In contrast to the delay

development curve, we find no statistically significant relationship

between the severity of attacks and increased experience (Pearson’s

r~{0:024, t-test, p~0:17), indicating no support for the severity-

increase hypothesis (H4). Across all organizations in our sample,

the average severity of the first deadly event is SxT~6:7+0:9,

which is only slightly larger than the average severity of deadly

events by highly experienced groups (those with kw100)

SxT~5:1+0:6. Figure 4A shows the composite severity curve

for all organizations in our study.

As with the frequency curves, we find that the conditional

severity distributions Pr (x Dk) roughly collapse onto a single,

underlying form (Figure 4B), which is similar to the power law

observed for all deadly terrorist attacks worldwide from 1968–

2008 [20,31]. That is, Richardson’s Law for terrorism appears to

hold for both inexperienced and highly experienced groups.

Combined with our static analysis of organizational size, this

pattern implies a highly counter-intuitive fact: the severity of

attacks by larger, more experienced organizations, is not

significantly greater than the severity of attacks by small,

inexperienced organizations. That is, the common assumption

that only experienced groups are capable of such mass destruction

[54] is incorrect: inexperienced organizations are just as likely to

produce extremely severe events as highly experienced organiza-

tions.

However, although more experienced organizations are not

systematically more lethal at the individual-event level, the

observed frequency-acceleration pattern implies that more expe-

rienced groups are significantly more lethal overall. This pattern

was observed by [8] in their analysis of the BAAD organizations.

Our results thus clarify their results, showing that the observed

correlation between greater lethality (total deaths attributed to an

organization) and greater organizational size appears because

larger, more experienced organizations produce events more

quickly than smaller, less experienced organizations. It is the

cumulative effect of the many small events that generates an

increased lethality, not a systematic increase in the lethality of

individual events.

Repeating this analyses on our ideology-coded set of organiza-

tions, we find no systematic dependence of severity of attacks on

organizational experience within any of the ideological categories

(see Text S1). That is, none of the model coefficients are

significant, and the average severity of events within each category

vary only a little. In short, we find that political ideology has no

systematic impact on the severity of events or the trajectory that

event severities take over the lifespan of an organization.

Discussion

Although details and circumstances vary widely across terrorist

organizations, the generic nature of our results suggests general

conclusions. In particular, we find strong evidence for a positive

feedback loop among organizational size (number of personnel),

experience (cumulative number of events) and the frequency at

which that organization launches new events. Small and

inexperienced organizations tend to produce events slowly, while

larger and more experienced organizations tend to produce events

sometimes hundreds of times more frequently.

Within this feedback loop, new attacks lead to organizational

growth and the corresponding increase in size leads to faster

production of new events because a larger size means more

terrorist cells are operating in parallel, not because events

themselves are planned more quickly. The result of this feedback

Table 3. Frequency curve parameters for organizations with
similar political motivations.

political
motivation groups events m s b significance

nationalist-
separatist

55 2959 5.1(5) 2.2(1) 0.9(2) p,0.001

reactionary 5 143 3.2(6) 1.8(2) 0.1(3) p,0.001

religious 17 999 5(1) 2.4(5) 1.7(5) p,0.001

revolutionary 53 2527 5.7(4) 2.3(2) 1.1(2) p,0.001

all secular 883 6232 5.2(2) 2.25(9) 0.9(1) p,0.001

all groups 910 7231 5.1(2) 2.32(9) 1.0(1) p,0.001

Note: statistical significance estimated via Monte Carlo simulation of a two-tail
test against a null model with b = 0 (no frequency acceleration), using the sum-
of-squared errors (SSE). Values in parentheses indicate bootstrap standard
uncertainty in the last digit.
doi:10.1371/journal.pone.0048633.t003
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loop is a generic ‘‘developmental’’ trajectory: as an organization

ages, it tends to produce violent events more and more quickly.

The typical form of this relationship can be mathematically

modeled by a power-law function, in which the delay Dt between

consecutive events decreases roughly like Dt!k{b where k counts

the cumulative number of events and b describes the strength and

direction of the feedback loop. The implication of the power-law

pattern is that large organizations are very much like ‘‘scaled up’’

versions of small organizations, and in particular that size and

experience are coupled in a positive feedback loop.

Across all organizations in our sample, we estimate

b~1:0+0:1, indicating a linear feedback loop, which implies

that an organization’s overall size is strongly correlated with the

size of its militant wing. This pattern is strongest for small or

inexperienced organizations, e.g., those with kƒ10 events, which

covers 87% of the 910 organizations in our sample. In contrast,

highly experienced organizations seem to saturate their event

production rates at the daily or weekly level, which may be

indicative of a tendency of large organizations to engage in

multiple types of activities, e.g., the provision of social services,

criminal activities, etc., continuing to grow their militant wings.

The mathematical precision of this relationship is striking, as is

the ability of our computer simulation to reproduce it. Except for

Richardson’s Law for the frequency and severity of wars, few

statistical relationships in the study of political violence exhibit

such regularity.

The power-law relation between organizational experience and

production rate is both conceptually and mathematically similar to

the relationship between cost and cumulative production observed

in manufacturing [36] or organizational learning [37,39], where

decreases in per-item production costs or time can be described by

a power law in the cumulative number of items produced. That a

similar patterns appears in the production of terrorist events is

surprising, and it may not be superficial to describe terrorist

organizations as a special type of manufacturing firm whose

principal product is political violence and whose overall produc-

tion of violence is fundamentally constrained by its size.

The implication is that terrorism is inherently non-amenable to

mass production, i.e., it is not a scalable enterprise, perhaps

because each event must be humanly conceived and planned

around a particular target, tactic or environment, and there is a

limit to how much this process can be automated. One implication

of this conclusion for cyber-terrorism is that even there, despite the

great potential for automating attacks, these too will likely not be

scalable without advances in general artificial intelligence.

In the language of economics, we say that terrorism capital and

labor are not freely substitutable with respect to producing new

events. If the day-to-day work of event production does not require

specialized skills, then the growth potential of an organization be

extremely large because it may draw on the largest possible pool of

potential recruits. This point suggests that conflict-level event

production rates should ultimately be responsive to policy and

counter-terrorism efforts that target the size and mobility of the

pool of potential recruits. That is, successful ‘‘hearts and minds’’

strategies [55] are likely to lead directly to lower incident rates by

both restricting the growth and reducing the size of terrorist

organizations. They may not, however, eliminate the possibility of

spectacular attacks as these do not depend on organizational size.

Recently, following our original work on progress curves in

terrorism [22], Johnson et al. [25] analyzed the timing of events in

the Iraq and Afghanistan conflicts, finding similar power-law like

acceleration curves in the delay between events. They argue that

this pattern is caused by a kind of ‘‘red queen’’ effect–a concept

borrowed from arms races in evolutionary biology [56]–in which

two sides of the conflict race through some abstract space, and the

timing between events is given by how far ‘‘ahead’’ the insurgent

side is in the race. In practice, however, this explanation is difficult

to validate because the connection is not specified as to how real-

world events and structures drive the dynamics of the abstract

race. In contrast, our explanation of the phenomena is both

tangible, general and testable: we argue that the size of the

insurgency or the terrorist group sets the tempo of the conflict.

The more people there are fighting, the more frequently we will

observe events. This explanation makes direct and testable

predictions about the relationship of organizational size and

frequency of events, which we show are upheld by empirical data

on organizational sizes. (As a technical note, in the language of

physics, the ‘‘size’’ of an organization or insurgency is an extensive

variable of the conflict system, much like area and number of

particles are for physical systems [57]; this fact makes additional

testable predictions of our theory.) The implication for the Iraq

and Afghanistan conflicts is that the number of insurgents active in

the various provinces is the primary determinant of the frequency

of events observed there.

Although the acceleration is remarkably strong, the vast

majority of organizations do not achieve high levels of experience

(only 23% of groups are associated with kw10 events) or fast

Figure 4. Severity of events. (A) Mean severity ,log x. of deadly attacks, with 1st and 3rd quartile, vs. group experience k. Solid line (with slope
zero) shows the expected delay, from a simple regression model. (B) Conditional severity distributions Pr(x/k), showing a data collapse onto a heavy-
tailed distribution, with the maximum likelihood power-law model for all severities (Richardson’s Law).
doi:10.1371/journal.pone.0048633.g004
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production rates. The progressive loss of organizations could be

due to high rates of organizational death, e.g., from counter-

terrorism activities or internal conflicts [44,58], shifts away from

violence, or a right-censoring effect on young and still active

organizations. Significantly, the particular mode of organizational

demise seems not to have a strong impact on the production time

of events, suggesting that the transition from development (growth)

to death may happen very quickly, so that the experience curve

does not bend upward but rather simply halts. Further exploration

of the death of organizations [44,58], and how it impacts the

production of violence, is an interesting avenue for future work.

Regardless of the reason, we do not expect the feedback loop to

continue as k??. If an organization succeeds in becoming large

enough to produce new events each day, it may function more like

a stable or mature social institution, with fundamentally different

constraints and incentives on the production of violence. Large

size and stability may also pose special risks, e.g., leading to larger

or longer conflicts. On the other hand, non-violent activities, e.g.,

engagement with political processes, may also become more

attractive with increased size. Exploring these possibilities is an

interesting avenue for future work.

Unlike the production of events, we find no evidence of any

relationship with the severity of attacks (H4). Rather, Richardson’s

Law–a power-law distribution in the frequency of severe events–

characterizes the severity of events at all levels of organizational

size or experience, and independent of the organization’s political

ideology.

This fact clarifies ongoing efforts to identify the underlying

social, political or physical mechanism that generates Richardson’s

Law in terrorism. Several existing explanations assume or predict

a severity-size relationship, e.g., the aggregation-disintegration

model of Johnson et al. [23] and [35], but these seem increasingly

unlikely given our results here, because they assume the maximum

severity of an event is proportional to the organization’s size N;

thus, if N is small, the severity of events x will also be small. That

is, in their existing form, these models predict a severity-size

relationship that does not appear in the data. Of course, these

models may be adapted to produce the observed size-indepen-

dence pattern, but doing so requires additional assumptions and

additional validation that may not be warranted.

In contrast, two plausible explanations are not ruled out: (i) the

explanation proposed in [20], which posits a coevolutionary

competition between states and terrorists in which event planning

time and severity are strongly related, and (ii) the explanation

proposed in [24], in which population densities are broad-scaled

and terrorists preferentially target high-density locations. Both of

these explanations do not assume any relation between the severity

of an attack and the size of an organization.

Together, our results suggest that the total lethality of larger and

more mature groups observed by Asal and Rethemeyer [8] is

probably best explained as a natural consequence of their much

more frequent activities, rather than as a systematic increase in the

deadliness of individual events. Policies that limit the growth of an

organization’s militant wing should lower the long-term probabil-

ity of a severe event by that organization. Such growth-limiting

policies could be described as ‘‘starving the beast’’ of the labor

necessary to produce rare but highly severe events.

The most productive targets of such policies will be large,

established organizations with long histories of producing terrorist

attacks. By virtue of their size, these organizations are likely to be

well-known players in their particular conflicts and thus easy

targets for specific policies. Because small organizations are equally

likely to produce severe events, policies aimed specifically at large,

well-known organizations may not limit the overall risk of severe

events from all sources. For small and potentially unknown

organizations, the most effective policies may be those aimed at

preventing their formation in the first place, i.e., policies that

curtail the acquisition of the means for and resort to violence.

Lacking this, once such a terrorist cell carries out its first attack and

begins its developmental trajectory, the best action by a

government may be an ‘‘overwhelming response’’ to encourage

through various means the dissolution of the nascent organization

and the truncation of its growth trajectory. This policy is not

without risk to the state, however, as certain countermeasures may

serve the terrorist’s goals [59,60].

In closing, we point out that the acceleration in the frequency of

terrorist events is independent of many commonly studied factors

associated with terrorism, including geographic location, time

period, international vs. domestic targets, ideological motivations

(religious, national-separatist, reactionary, etc.), and political

context. Our results thus demonstrate that some aspects of

terrorism are not nearly as contingent or unpredictable as is often

assumed and the actions of terrorists may be constrained by

processes unrelated to strategic tradeoffs among costs, benefits and

preferences. Identifying and understanding these processes offers a

complementary approach to the traditional rational-actor frame-

work, and a new way to understand what regularities exist, why

they exist, what they imply for long-term social and political

stability, e.g., large-scale violent conflicts like civil and interstate

wars.
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