1,276 research outputs found

    Social Needs Resource Connections: A Systematic Review of Barriers, Facilitators, and Evaluation

    Get PDF
    Healthcare organizations increasingly are screening patients for social needs (e.g., food, housing) and referring them to community resources. This systematic mixed studies review assesses how studies evaluate social needs resource connections and identifies patient- and caregiver-reported factors that may inhibit or facilitate resource connections

    Sterile Testis Complementation with Spermatogonial Lines Restores Fertility to DAZL-Deficient Rats and Maximizes Donor Germline Transmission

    Get PDF
    Despite remarkable advances in assisted reproductive capabilities ∼4% of all couples remain involuntarily infertile. In almost half of these cases, a lack of conception can in some measure be attributed to the male partner, wherein de novo Y-chromosomal deletions of sperm-specific Deleted-in-Azoospermia (DAZ) genes are particularly prevalent. In the current study, long-term cultures of rat spermatogonial stem cells were evaluated after cryo-storage for their potential to restore fertility to rats deficient in the DAZ-like (DAZL) gene. Detailed histological analysis of DAZL-deficient rat testes revealed an apparently intact spermatogonial stem cell compartment, but clear failure to produce mature haploid gametes resulting in infertility. After proliferating >1 million-fold in cell number during culture post-thaw, as few as 50,000 donor spermatogonia transplanted into only a single testis/recipient effectively restored fecundity to DAZL-deficient rats, yielding 100% germline transmission to progeny by natural mating. Based on these results, the potency and efficacy of this donor stem cell line for restoring fertility to azoospermic rodents is currently unprecedented. Prospectively, similar successes in humans could be directly linked to the feasibility of obtaining enough fully functional spermatogonial stem cells from minimal testis biopsies to be therapeutically effective. Thus, regeneration of sperm production in this sterile recipient provides an advanced pre-clinical model for optimizing the efficacy of stem cell therapies to cure a paradoxically increasing number of azoospermic men. This includes males that are rendered infertile by cancer therapies, specific types of endocrine or developmental defects, and germline-specific de novo mutations; all of whom may harbor healthy sources of their own spermatogonial stem cells for treatment

    Polar bears are inefficient predators of seabird eggs

    Get PDF
    Climate-mediated sea-ice loss is disrupting the foraging ecology of polar bears (Ursus maritimus) across much of their range. As a result, there have been increased reports of polar bears foraging on seabird eggs across parts of their range. Given that polar bears have evolved to hunt seals on ice, they may not be efficient predators of seabird eggs. We investigated polar bears\u27 foraging performance on common eider (Somateria mollissima) eggs on Mitivik Island, Nunavut, Canada to test whether bear decision-making heuristics are consistent with expectations of optimal foraging theory. Using aerial-drones, we recorded multiple foraging bouts over 11 days, and found that as clutches were depleted to completion, bears did not exhibit foraging behaviours matched to resource density. As the season progressed, bears visited fewer nests overall, but marginally increased their visitation to nests that were already empty. Bears did not display different movement modes related to nest density, but became less selective in their choice of clutches to consume. Lastly, bears that capitalized on visual cues of flushing eider hens significantly increased the number of clutches they consumed; however, they did not use this strategy consistently or universally. The foraging behaviours exhibited by polar bears in this study suggest they are inefficient predators of seabird eggs, particularly in the context of matching behaviours to resource density

    Support for the Slope Sea as a major spawning ground for Atlantic bluefin tuna: evidence from larval abundance, growth rates, and particle-tracking simulations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hernandez, C. M., Richardson, D. E., Rypina, I. I., Chen, K., Marancik, K. E., Shulzitski, K., & Llopiz, J. K. Support for the Slope Sea as a major spawning ground for Atlantic bluefin tuna: evidence from larval abundance, growth rates, and particle-tracking simulations. Canadian Journal of Fisheries and Aquatic Sciences, 79(5), (2021): 814-824, https://doi.org/10.1139/cjfas-2020-0444.Atlantic bluefin tuna (Thunnus thynnus) are commercially and ecologically valuable, but management is complicated by their highly migratory lifestyle. Recent collections of bluefin tuna larvae in the Slope Sea off northeastern United States have opened questions about how this region contributes to population dynamics. We analyzed larvae collected in the Slope Sea and the Gulf of Mexico in 2016 to estimate larval abundance and growth rates and used a high-resolution regional ocean circulation model to estimate spawning locations and larval transport. We did not detect a regional difference in growth rates, but found that Slope Sea larvae were larger than Gulf of Mexico larvae prior to exogenous feeding. Slope Sea larvae generally backtracked to locations north of Cape Hatteras and would have been retained within the Slope Sea until the early juvenile stage. Overall, our results provide supporting evidence that the Slope Sea is a major spawning ground that is likely to be important for population dynamics. Further study of larvae and spawning adults in the region should be prioritized to support management decisions.Ship time was supported by NOAA, the Bureau of Ocean Energy Management, and the US Navy through interagency agreements for Atlantic Marine Assessment Program for Protected Species (AMAPPS). CMH and JKL received funding from the Woods Hole Oceanographic Institution’s Ocean Life Institute (#13080700) and Academic Programs Office. CMH was additionally supported by the Adelaide and Charles Link Foundation and the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution’s Marine Policy Center. IIR, KC, and JKL were supported by a US National Science Foundation (NSF) grant (OCE-1558806). JKL was additionally supported by the Lenfest Fund for Early Career Scientists and the Early Career Scientist Fund at Woods Hole Oceanographic Institution

    Stress-Induced Reorganization of the Mycobacterial Membrane Domain

    Get PDF
    Cell elongation occurs primarily at the mycobacterial cell poles, but the molecular mechanisms governing this spatial regulation remain elusive. We recently reported the presence of an intracellular membrane domain (IMD) that was spatially segregated from the conventional plasma membrane in Mycobacterium smegmatis. The IMD is enriched in the polar region of actively elongating cells and houses many essential enzymes involved in envelope biosynthesis, suggesting its role in spatially restricted elongation at the cell poles. Here, we examined reorganization of the IMD when the cells are no longer elongating. To monitor the IMD, we used a previously established reporter strain expressing fluorescent IMD markers and grew it to the stationary growth phase or exposed the cells to nutrient starvation. In both cases, the IMD was delocalized from the cell pole and distributed along the sidewall. Importantly, the IMD could still be isolated biochemically by density gradient fractionation, indicating its maintenance as a membrane domain. Chemical and genetic inhibition of peptidoglycan biosynthesis led to the delocalization of the IMD, suggesting the suppression of peptidoglycan biosynthesis as a trigger of spatial IMD rearrangement. Starved cells with a delocalized IMD can resume growth upon nutrient repletion, and polar enrichment of the IMD coincides with the initiation of cell elongation. These data reveal that the IMD is a membrane domain with the unprecedented capability of subcellular repositioning in response to the physiological conditions of the mycobacterial cell. IMPORTANCE Mycobacteria include medically important species, such as the human tuberculosis pathogen Mycobacterium tuberculosis. The highly impermeable cell envelope is a hallmark of these microbes, and its biosynthesis is a proven chemotherapeutic target. Despite the accumulating knowledge regarding the biosynthesis of individual envelope components, the regulatory mechanisms behind the coordinated synthesis of the complex cell envelope remain elusive. We previously reported the presence of a metabolically active membrane domain enriched in the elongating poles of actively growing mycobacteria. However, the spatiotemporal dynamics of the membrane domain in response to stress have not been examined. Here, we show that the membrane domain is spatially reorganized when growth is inhibited in the stationary growth phase, under nutrient starvation, or in response to perturbation of peptidoglycan biosynthesis. Our results suggest that mycobacteria have a mechanism to spatiotemporally coordinate the membrane domain in response to metabolic needs under different growth conditions

    It Made Me Feel like Things Are Starting to Change in Society:” A Qualitative Study to Foster Positive Patient Experiences during Phone-Based Social Needs Interventions

    Get PDF
    Many healthcare organizations are screening patients for health-related social needs (HRSN) to improve healthcare quality and outcomes. Due to both the COVID-19 pandemic and limited time during clinical visits, much of this screening is now happening by phone. To promote healing and avoid harm, it is vital to understand patient experiences and recommendations regarding these activities. We conducted a pragmatic qualitative study with patients who had participated in a HRSN intervention. We applied maximum variation sampling, completed recruitment and interviews by phone, and carried out an inductive reflexive thematic analysis. From August to November 2021 we interviewed 34 patients, developed 6 themes, and used these themes to create a framework for generating positive patient experiences during phone-based HRSN interventions. First, we found patients were likely to have initial skepticism or reservations about the intervention. Second, we identified 4 positive intervention components regarding patient experience: transparency and respect for patient autonomy; kind demeanor; genuine intention to help; and attentiveness and responsiveness to patients’ situations. Finally, we found patients could be left with feelings of appreciation or hope, regardless of whether they connected with HRSN resources. Healthcare organizations can incorporate our framework into trainings for team members carrying out phonebased HRSN interventions

    Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario

    Get PDF
    A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg−1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles
    corecore